Capital Requirements, Liquidity and Financial Stability: the case of Brazil

Sergio Rubens S. Souza
Banco Central do Brasil – Depep
As opiniões expressas neste trabalho são exclusivamente do autor e não refletem, necessariamente, a visão do Banco Central do Brasil ou de seus membros.

The views expressed in this work are those of the author and do not necessarily reflect those of the Banco Central do Brasil or its members.
Objectives

- To build a network model to simulate effects of shocks on a banking system subject to regulatory constraints.
- To use this model to stress test the Brazilian banking system under a variety of shocks to support an assessment of its possible reactions.
Main contributions

- We study the reactions to asset-side shocks of a banking system subject to a set of rules: attending to capital requirements, contagion channels: direct exposures, fire sales of market-to-mkt (MTM) assets, fire sales of non-MTM assets.

- We propose a method to compute individual banks contributions to systemic losses.

- We find:
 - Small shocks: medium-sized banks among the largest contributors.
 - As shocks become severe, only big banks contribute significantly.
 - Procyclicality tends to increase with shock severity.
 - Asset prices decay rates are relevant for systemic losses.
Model basics

- Model extends Cifuentes, Ferrucci and Shin (2005);
- Network of mutually exposed banks;
- Banks must comply with capital requirements;
- To achieve compliance, banks sell risky assets;
- Risky assets (liquid or illiquid) are not perfectly liquid, thus fire sales imply in price falls;
- Asset sales produce externatilities affecting other banks;
- Banks suffering losses:
 - Banks that suffer direct losses from their debtors in the network
 - Banks that fire-sell assets
 - Banks that own assets subject to MtM
- Losses can lead banks to lose their compliance or even to insolvency.
Model – Balance sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_i</td>
<td>D_i</td>
</tr>
<tr>
<td>$\sum_j x_{ij}$</td>
<td>$\sum_j x_{ji}$</td>
</tr>
<tr>
<td>A_i^L</td>
<td>L_i^O</td>
</tr>
<tr>
<td>A_i^I</td>
<td>L_i</td>
</tr>
<tr>
<td>F_i^A</td>
<td>V_i</td>
</tr>
</tbody>
</table>
- Initial state, with / without shocks
- Cycles until equilibrium
 1. Banks update balance sheets against possible losses

Model – Timeline

- Initial state
- Equilibrium
- Feedback to the banking system
- Externalities sources
2. Banks check solvency and estimate network payments
3. Insolvent: bank liquidated – generate externalities
4. Banks compute RWA and check compliance with F (capital requirement ratio)
5. Compliant banks: do not generate externalities, but are subject to externalities from others on next cycles.
6. Non-compliant banks:
 • Try adjustment: put liquid assets to sale (outside network).
7. If liquid assets fire sales aren’t enough:
 • Try adjustment: put illiquid assets to sale (outside network).
8. Can’t adjust after all: bank is liquidated (liquidation costs).
Model – Timeline

9. Trading (generate externalities)
 9A Liquid assets: supply → market price → trading
 Next cycle, liquid assets are marked to market.
 9B Illiquid assets: supply → market price → trading
10. Aggregate new externalities
 • New externalities: feedback
 • Otherwise: all non-liquidated banks are compliant: equilibrium
Data

- Date: Dec/2013
- Banks (conglomerates + individual banks): 124 commercial + investment
- Supervisory variables (division into liquid / illiquid assets, capital ratio, regulatory capital)
- Interbank exposures network (interbank onlending, credit, credit assignment, interfinancial deposits and other securities)
- Accounting data (we get deposits, cash-equivalent assets, loans and fund providing portfolios)

- Data from CBB, Financial System Monitoring Department.

- Assumed max. price decays: 20% Liq assets, 30% Illiq assets.
Simulations

Bad debt ratio increases – in percentage points of the portfolio of loans.

![Graph showing the relationship between losses and total assets ratio](image-url)
Simulations

Bad debt ratio increases – in percentage points of the portfolio of loans. Liquidity: cash equivalent assets that can be spent buying risky assets.
Simulations

Bad debt ratio increases – in percentage points of the portfolio of loans. Procyclicality measure: additional losses / initial shock.

![Graph showing additional losses and initial shock vs. bad debt ratio]
Simulations
Default of individual banks

Little impact provoked by contagion: lost assets \(\leq 1.5\% \) total assets
Losses provoked by most individual big banks amplify less than 50%.
Simulations

Banks contributions to risk under a bad debt ratio increase of 10 p.p.

\[
\text{Contribution}_i(\%) = \frac{\Delta \text{Loss}_{\text{bank immunized}}}{\Delta \text{Loss}_{\text{normal simulation}}}
\]
Suppose a bank needs to put liquid assets to sale because at the moment its capital ratio is 0.10 instead of 0.11:

- **Small bank:**
 - Small amount sold
 - Little price fall → little additional losses (MtM), usually absorbed by capital buffers.

- **Big bank:**
 - Large amount sold
 - Significant price fall → significant additional losses (MtM) → feedback (acceleration)

This explains the increase of shock amplification in this model: the capital buffer of big banks is consumed and they need to sell assets.
For the decay 70/55 and beyond, big banks contribute significantly with losses selling large amounts of illiquid assets.
Simulations
Robustness test

Beyond the decay 70/55, procyclicality increases faster.
Simulations
Robustness test

➢ Application: during crises, different asset prices decay rates can produce very different outcomes, especially the steeper ones.
Conclusions

- Simulations and resilience: after an increase of 10 p.p. in the bad debt ratio, estimated total losses are around 0.5%. The simulated default of an individual bank provokes less than 2% total loss.

- Contributions to systemic losses are related with size, for a stress scenario of 10 p.p. shock to the bad debt ratio.

- Regarding procyclicality (shocks amplification), we can conclude:
 - It increases with the severity of the initial shock.
 - Fire sales by big banks is an important amplification mechanism.
 - If decay rates are high, small differences in the rate produce rather different outcomes.
THANK YOU