Risk-Taking Incentives of Modern Banks

Natalya Martynova
University of Amsterdam

Lev Ratnovski
International Monetary Fund

Razvan Vlahu
De Nederlandsche Bank

IX Seminar on Risk, Financial Stability, and Banking, Sao Paulo
August 14-15, 2014

The views expressed in this paper are those of the authors and do not necessarily represent those of DNB or IMF
Motivation

- Risk-taking in FIs with large and stable franchise
 - UBS in Switzerland
 - AIG in the US
 - Washington Mutual in the US

- But franchise value limits risk taking (Jensen and Meckling, 1976)

- Our goal: reconcile theory and evidence
OECD Financial Intermediaries

Returns Jul 07–Dec '08 vs Market to Book '05

Stock return
Jul'07-Dec'08, %

Martynova, Ratnovski, Vlahu
Risk-Taking Incentives of Modern Banks
Observation:
- Traditionally, changing risk in existing business, but in fact:
 - **Stable core business** (e.g., relationship banking)
 - Non-scalable, profitable, safe
 - Spare borrowing capacity
 - **Add new risky business** (e.g., carry trade)
 - Scalable
 - Modest gains ("alpha"), but a small probability of large losses
Franchise value and incentives to take risk

- **Overall effect can be positive or negative:**
 - Borrowing capacity binding, more franchise → stop risk taking
 - Borrowing capacity not binding, more franchise → risk on larger scale
Related Literature

- **Does franchise value** reduce bank risk-taking?
 - Yes: Keeley (1990), Demsetz et al. (1996), Repullo (2004);
 - No: Blum (1990), Hellman et al. (2000), Matutes and Vives (2000), Calem and Rob (1999), Perotti et al. (2011)

- **Does capital** make bank more stable?
 - Yes: Beltratti and Stulz (2012), Berger and Bouwman (2013)
 - No: Barth et al. (2006), Huang and Ratnovski (2009), GSFR (2009), Camara et al. (2010)

- **Does better institutional environment** reduce bank risk?
 - Yes: Laeven (2001), La Porta et al. (2003), Boyd and Hakenes (2012)
 - No: Giannonne et al. (2011), Gourinchas et al. (2011)
Table of Contents

1. Introduction

2. Basic model
 - Set up
 - Exogenous Cost of Bank Funding
 - Endogenous Cost of Bank Funding

3. Extensions
 - Effort in the Core Project
 - Bank Capital

4. Policy implications
Basic model: Investment

- Three dates (0, 1, 2), no discounting, universal risk neutrality
- Bank has no initial capital, funded with debt
- Agents: the banker (owner-manager), creditors (depositors)

Two types of investments available:

- **Core** project (safe, not scalable):
 - invest 1 at date 0, certain return R at date 2
 - $NPV = R - 1 > 0$ franchise value

- **Market-based** investment (risky, scalable):
 - invest X at date 1, return at date 2:
 $$
 \begin{cases}
 (1 + \alpha)X & \text{w.p. } p \\
 0 & \text{w.p. } 1 - p
 \end{cases}
 $$
 - $NPV = p(1 + \alpha) - 1 < 0$
 - Less profitable: $\alpha < R - 1$
Basic model: Agents

Banker:
- chooses the scale of risky investment X
- maximizes expected profit
- credit constrained (Holmstrom and Tirole, 1997)

$$\Pi \geq b(1 + X)$$ \hspace{1cm} (2)

- Core project not credit constrained: $R - 1 \geq b$
- Risky investment credit constrained: $\rho \alpha < b$

Two types of creditors:
- date 0: charge r_0 (till date 2)
- date 1: charge r_1
Basic model: Timeline

Date 0
- A bank has no initial capital;
- A bank attracts funds at the interest rate r_0 to invest in the *core* project of size I.

Date 1
- A bank chooses whether to invest in the *risky* asset of size X and attracts additional funds at the interest rate r_1;
- A bank chooses whether to convert the assets into private benefits.

Date 2
- Projects returns are realized and returns are distributed.
Exogenous Cost of Bank Funding

- \(r_0 = r_1 = 0 \) (deposit insurance / TBTF)

- Banker maximizes payoff:
 \[
 p \left[R - 1 + (1 + \alpha)X - X \right] + (1 - p) \max \left[R - 1 - X, 0 \right] \tag{3}
 \]

 \(\text{return upon success} \)
 \(\text{return upon failure} \)

- when \(X \leq R - 1 \), never takes risk
Exogenous Cost of Bank Funding

- **Incentives to take risk**

 \[p[R - 1 + \alpha X] > R - 1 \]

 Banker undertakes risky investment only on a sufficient scale:

 \[X > X_{\text{min}} = \frac{(1 - p)(R - 1)}{p\alpha} \]

- **Leverage constraint**

 \[p[R - 1 + \alpha X] \geq b(1 + X) \]

 Maximum scale of risky investment:

 \[X \leq X_{\text{max}} = \frac{p(R - 1) - b}{b - p\alpha} \]

Martynova, Ratnovski, Vlahu

Risk-Taking Incentives of Modern Banks
Exogenous Cost of Bank Funding

- Bank takes risk at scale X_{max} if $X_{\text{max}} > X_{\text{min}}$

 $$b < b_{\text{max}} = \frac{p\alpha(R - 1)}{p\alpha + (1 - p)(R - 1)}$$

- Interpret low b as good institutional environment
Main Result:

Proposition

Higher franchise value → bank more likely to undertake risky investment and at a larger scale
Interest rates r_0 and r_1 are endogenous

Bank creditors break even

When bank is insolvent, assets R are distributed according to seniority rule:

- upon bankruptcy:
 - θX to date 1 creditors
 - $R - \theta X$ to date 0 creditors
- θ is seniority of date 1 creditors, exogenous, $0 < \theta < \frac{R}{X}$

Solve backwards
Bank takes risk and at scale X^θ_{max} if

$$\begin{cases}
 b < b^\theta_{\text{max}} (< b_{\text{max}}) \\
 \theta > \theta_{\text{min}}
\end{cases}$$

Main result holds:

$\uparrow R \rightarrow$ more risk
Additional result:

- Risk taking increases when new debt is senior:
 \[\theta \uparrow \rightarrow \text{more risk} \]

 - \[\theta \uparrow \Rightarrow \theta \uparrow r_0 \Rightarrow \text{less to lose on core project} \]

 - \[\theta \uparrow \Rightarrow \theta \downarrow r_1 \Rightarrow \text{risky project more attractive} \]
Table of Contents

1 Introduction

2 Basic model
 • Set up
 • Exogenous Cost of Bank Funding
 • Endogenous Cost of Bank Funding

3 Extensions
 • Effort in the Core Project
 • Bank Capital

4 Policy implications
Bank has to exert effort to improve the expected value of the core investment

Assumptions:
- Exogenous cost of funding $r_0 = r_1 = 0$
- Return on the core project is R w.p. e and 0 otherwise
- $e \in [0; 1]$ is banker’s effort at date 0 at a private cost $ce^2/2$
- Realization of R is known after the effort is exerted

Main result:
- For $b < b_{max}$, the presence of risky investment opportunity increases bank incentives to exert effort in the core project
Consider the role of bank capital

Assumptions:
- Exogenous cost of funding $r_0 = r_1 = 0$
- Bank is financed by inside equity $k < 1$
- $1 - k$ of debt finances the core project and X the risky investment

Main result:
- For $b < b^k_{\text{max}}$ (where $b^k_{\text{max}} > b_{\text{max}}$), bank undertakes the risky investment
- Higher capital k: bank is more likely to take risk and at a larger scale
- Note: this result concerns high actual capital, not high capital requirements
Policy Implications

- Risk-taking in dynamics: special focus on well-capitalized banks’ rapid asset growth
- Leverage ratios are important in addition to risk-weighted capital requirements
- Better protection of creditor rights may increase risk-taking
- Dangers of high seniority funding
 - repo market reform
- Lack of bank competition increases risk-taking via franchise value accumulation
Why do banks with high franchise value take more risk?

Banks take risk through new borrowing
Franchise value allows to borrow more

We show that:
- franchise value
- better institutional environment
- more senior debt

increase bank risk-taking.