VIII Seminário Anual sobre
Riscos, Estabilidade Financeira e Economia Bancária
Loan pricing following a macro prudential within-sector capital measure

Ricardo Schechtman
e Bruno Martins
Research Department, Central Bank of Brazil
As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco Central do Brasil ou de seus membros.

The views expressed in this work are those of the author(s) and do not necessarily reflect those of the Banco Central do Brasil or its members.
Introduction

- International financial crisis of 2007/2008 ⇒ financial regulation with a new macro prudential dimension
 - Countercyclical capital requirements
 - Example: Basel III countercyclical buffer.
 - Sectoral capital requirements
 - The policy of varying capital requirements only on lending to sectors that may be exhibiting particular exuberance (CGFS, 2012)
 - Within-sector capital requirements (Brazil, circulars 3515, 3563)
 - Capital requirement raised, and later released, only for particular targets within the sector
The Brazilian auto loan credit sector in 2009-2010: fast and unbalanced expansion?

Credit to new auto loans (R$ bill)

New auto loans by maturity (share - %)

New auto loans by LTV (share - %)

Loan Spread (monthly average - %)
• Central Bank of Brazil adopted a macro-prudential approach

• Capital requirement doubled, from 8.25% to 16.5%, for new auto loans with long maturities and high LTVs:

<table>
<thead>
<tr>
<th>Maturity (months)</th>
<th>>24</th>
<th>>36</th>
<th>>48</th>
<th>>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTV(%)</td>
<td>>80</td>
<td>>70</td>
<td>>60</td>
<td>All</td>
</tr>
</tbody>
</table>

• New regulation established on December, 3th of 2010
What happened afterwards?

Credit to new auto loans (R$ bill)

New auto loans by maturity (share - %)

New auto loans by LTV (share - %)

Loan Spread (monthly average - %)
The spread behavior of targeted and untargeted auto loans

Figure: Loan spread charged on new auto loans

(monthly average - %)

- Banks passing on to targeted loans their higher total funding costs derived from the higher capital requirements?
Transmission mechanism from higher capital requirements to higher banks’ loan spreads:

- Higher capital requirement increases optimal internal target for bank capital ratio (e.g. Berrospide and Edge, 2009; Francis e Osborne, 2009)
- Need to constitute more capital may be addressed by higher lending spreads.
- Additionally, higher (future) capital increases bank total funding costs, passed on to lending spreads. (e.g. Admati, 2011)
 - The intensity of this effect is a matter of large debate (e.g. BCBS, 2010; Kashyap et al., 2010; Miles et al., 2013)
 - This paper contributes to the debate by providing new evidence of material effects.
This paper’s goal

- To examine the consequences on auto loan spreads of the novel macro prudential within-sector capital measure
 - If banks price each loan based on its marginal funding cost, then banks will increase more the spread of targeted auto loans after the new regulation.
 - Previous graphical analysis suggests this is the case.

- Remark: the set of untargeted auto loans may be indirectly affected.
 - Some pass-through of the higher bank total financing costs also to untargeted loans
 - Migration of demand from targeted to untargeted loans (substitution effect)
Empirical literature on the effects of bank capital shocks on bank credit supply

- Challenge of disentangling supply from demand effects

- Natural experiments: shocks to capital unrelated to lending opportunities
 - Peek and Rosengreen (1997) and Houston et al. (1997): classical papers
 - Aiyar et al. (2012), Jimenez et al. (2012) and our paper: capital shocks derive from specific regulatory changes
 - Regulatory actions may still be partly endogenous

- To control for demand effects: loan-level data and fixed effects (Jimenez et al., 2012 and our paper)

- Differently to most of the literature, this paper focuses on prices rather than on quantities.
Methodology

- Model for the impact of new regulation:

\[
\log(\text{Loan_spread}_{i,b,l,t}) = c + \gamma \cdot \text{Loan targeted}_i + \alpha \cdot \text{New regulation}_t + \beta \cdot \text{New regulation}_t \times \text{Loan targeted}_i + \text{bank controls}_{b,t-1} + \text{loan controls}_i + \text{time controls}_t + \text{fixed effect}_{i,b} + \text{error term}_{i,b,l,t}
\]

- \(\beta\) measures the relative impact of the regulatory capital increase on the spread charged on targeted auto loans in comparison to untargeted ones
 - We expect \(\beta > 0\)

- \(\alpha\) represents the spread increase suffered by untargeted auto loans after the new regulation
 - Some pass-through of the higher bank total financing costs to untargeted loans and migration of demand to untargeted loans after the new regulation might be consistent with \(\alpha > 0\)
Methodology

- Borrower and borrower-bank fixed effects
- Bank controls: \(Assets, Liquidity, Reserves, Capital, Npl, Roa \), among others
- Monthly dummies

- Loan controls: \(amount, maturity \) and \(LTV \)
 - Possibly jointly determined with loan spreads
 - Models estimated both with and without loan controls

- Variable \(Loan \ targeted \) also possibly jointly determined with loan spreads
 - At the core of the analysis
 - Matched loan approaches:
 - No migration
 - Similar maturities, sizes and LTVs
 - Robustness: matched loans sufficiently close.
• On November 11th, 2011, regulation changed again, abolishing most of the previous capital increases for auto loans.

• Model for the impact of the regulatory capital release:

$$\log(\text{Loan}_i, b, l, t) = c + \gamma \cdot \text{loan targeted}_l + \alpha \cdot \text{regulatory release}_t + \beta \cdot \text{regulatory release}_t \times \text{loan targeted}_l + \text{bank controls}_{b, t-1} + \text{loan controls}_l + \text{time controls}_t + \text{fixed effect}_{i, b} + \text{error term}_{i, b, l, t}.$$

• We expect $\beta < 0$

• Comparison of β’s
Data

- Sample: new auto loans granted from June 2010 to May 2011 (new regulation models) or from July 2011 to March 2012 (capital regulatory release).

- Data sources: SCR (Brazilian Public Credit Register) and COSIF (accounting database of Brazilian financial institutions)
Results: introduction of new regulation

<table>
<thead>
<tr>
<th>Dependent variable: Lspread</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New regulation (α)</td>
<td>-0.004</td>
<td>0.027***</td>
<td>0.065***</td>
<td>0.035*</td>
<td>0.025</td>
<td>0.078</td>
<td>0.050</td>
</tr>
<tr>
<td>New regulation x Loan targeted (β)</td>
<td>0.262***</td>
<td>0.203***</td>
<td>0.165***</td>
<td>0.165***</td>
<td>0.157***</td>
<td>0.165***</td>
<td>0.128***</td>
</tr>
</tbody>
</table>

Loan controls	Yes						
Fixed effects	No	borrower	borrower-bank	borrower-bank	borrower-bank	borrower-bank	borrower-bank
Before and after new regulation	No	No	No	Yes	Yes	Yes	Yes
Matched by loan type (no migration)	No	No	No	No	Yes	Yes	Yes
Matched also by (maturity, LTV, amount)	No	No	No	No	No	Yes	Yes
Short distance between matched loans	No	No	No	No	No	No	Yes
Number of observations	2,851,357	212,366	71,909	38,038	21,110	3,401	729
R^2 (adj)	0.5029	0.4078	0.2604	0.2905	0.3211	0.4483	0.3884
• Model (1) does not control for any unobservable characteristic ⇒ estimates based on the full set of auto loan borrowers
 • β equal to 26%; α insignificant

• Model (2) has $\beta = 20\%$ and borrower fixed effects, whereas model (3) has borrower-bank fixed effects and $\beta = 16\%$

• Model (4): only borrowers who have taken out loans from the same bank both before and after the new regulation
• Model (5): within each borrower-bank, only auto loans with no migration
• Model (6): matched loans with maturity, size and LTV at most 20% distant
 • Models (4)-(6): magnitude of β close to the model (3), α again generally insignificant; increasingly smaller samples and higher adj-R^2

• Model (7): matched loans at most 90 days apart

• Smallest estimated β: the spread charged on the same borrower by the same bank for similar targeted auto loans increased 13% after the new regulation
 • 13% increase translates into an addition of 1.74 p.p. to the average spread before the new regulation.
Results: introduction of new regulation

<table>
<thead>
<tr>
<th>Dependent variable: Lspread</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New regulation ((\alpha))</td>
<td>-0.033</td>
<td>0.007</td>
<td>0.061***</td>
<td>0.012</td>
<td>-0.002</td>
<td>0.069</td>
<td>0.039</td>
</tr>
<tr>
<td>New regulation x Loan targeted ((\beta))</td>
<td>0.302***</td>
<td>0.228***</td>
<td>0.163***</td>
<td>0.157***</td>
<td>0.150***</td>
<td>0.163***</td>
<td>0.127***</td>
</tr>
</tbody>
</table>

- Loan controls: No, No, No, No, No, No, No, No
- Fixed effects: No, borrow er, borrow er-bank, borrow er-bank, borrow er-bank, borrow er-bank, borrow er-bank
- Before and after new regulation: No, No, No, Yes, Yes, Yes, Yes, Yes
- Matched by loan type (no migration): No, No, No, No, Yes, Yes, Yes, Yes
- Matched also by (maturity, LTV, amount): No, No, No, No, No, Yes, Yes, Yes
- Short distance between matched loans: No, No, No, No, No, No, No, Yes

- Number of observations: 2,851,357, 212,366, 71,909, 38,038, 21,110, 3,401, 729
- \(R^2\) (adj): 0.2213, 0.2259, 0.1176, 0.1747, 0.2039, 0.4457, 0.3755
• Potential endogeneity of loan controls ⇒ same previous models estimated without them

• Coefficient β remains always significant with magnitudes very close to the respective previous models.

• Except for model (3), coefficient α never significant.

• Combined evidence does not allow conclusion that the spread of untargeted loans has also increased due to the introduction of new regulation
 • Substitution effects related to the migration of demand have been limited.
 • Pass-through of higher bank total financing costs to the set of loans not targeted by the regulation has also been limited.
Results: capital regulatory release

<table>
<thead>
<tr>
<th>Dependent variable: Lspread</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory release (α)</td>
<td>0.050***</td>
<td>0.019***</td>
<td>0.0070</td>
<td>0.027*</td>
<td>0.048***</td>
<td>0.038</td>
<td>0.041</td>
</tr>
<tr>
<td>Regulatory release x Loan targeted (β)</td>
<td>-0.081***</td>
<td>-0.054***</td>
<td>-0.065***</td>
<td>-0.078***</td>
<td>-0.088***</td>
<td>-0.044*</td>
<td>-0.052*</td>
</tr>
<tr>
<td>Loan controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fixed effects</td>
<td>No</td>
<td>borrower</td>
<td>borrower-bank</td>
<td>borrower-bank</td>
<td>borrower-bank</td>
<td>borrower-bank</td>
<td>borrower-bank</td>
</tr>
<tr>
<td>Only borrowers before and after modification regulation</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Matched by loan type (no migration)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Matched also by (maturity, LTV, amount)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Short distance between matched loans</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>2,862,479</td>
<td>191,648</td>
<td>52,970</td>
<td>28,243</td>
<td>14,717</td>
<td>1,228</td>
<td>885</td>
</tr>
<tr>
<td>R^2 (adj)</td>
<td>0.3818</td>
<td>0.4659</td>
<td>0.2107</td>
<td>0.2182</td>
<td>0.2060</td>
<td>0.1583</td>
<td>0.0951</td>
</tr>
</tbody>
</table>
• Coefficient of the interaction (β) always negative and significant.
 • Banks charged relatively smaller spreads after the regulatory release on their auto loans whose capital requirements decreased.

• Absolute magnitudes much smaller than corresponding magnitudes in the models for the introduction of new regulation.
 • The cancelation of the capital requirement increase had a smaller impact on spreads than original increase.
 • Possible explanation: more precautionary behavior adopted by banks

• Coefficient on Regulatory release (α) insignificant in three models and in almost all models when loan controls are withdrawn (not shown).
 • No strong evidence that auto loans that continued to receive the same capital requirement have been charged different or lower spreads.
• Capital requirements raised and later released in Brazil for auto-loans with specific long maturities and high LTVs. (Within-sector capital requirements)

• Brazilian banks raised, after the new regulation, spreads charged on the same borrower for similar auto loans whose capital charges increased.
 • Increase was at least of 13%

• Evidence on increase of spreads charged for the set of untargeted auto loans not robust.
 • Spillovers were limited

• Release of regulatory capital similarly associated to lower spreads charged on the same borrower for similar auto loans whose capital charges decreased
 • Relatively, reduction in spreads smaller than the original rise
Thanks!

Contact:

ricardo.schechtman@bcb.gov.br
bruno.martins@bcb.gov.br