VIII Annual Seminar on Risk, Financial Stability and Banking

São Paulo
August 8, 2013

Price Differentiation and Menu Costs in Credit Card Payments

Marcos Valli Jorge
Banco Central do Brasil

Wilfredo Leiva Maldonado
Catholic University of Brasilia
Market structure
(four-party scheme)

- Merchant
- Acquirer
- Consumer
- Issuer

- Merchant fee: m
- Interchange fee: a
- Consumer fee: f
- Price: p

Credit card scheme: set rules and act as switch and router
Main reference

• Rochet&Wright (JBF 2010) : “Credit card interchange fees”

 – “General tendency for merchants to adhere to the setting of a single price regardless of the form of payment.”

 – “Part of the reason for this is the no-surcharge rules adopted by the credit card systems.”

 – “If retailers were able and willing to discriminate based on the use of store credit, they maybe able to induce consumers to use credit cards and store credit efficiently.”

 – “One important direction for future research: to extend our model to allow retailers to offer different prices when consumers make use of store credit.”
Main aspects of R&W’s approach

• Model the **credit functionality** of a credit card: much of the existing literature treats payment card as debit card;

• Consider the **store credit** as a **competitor** of the credit card (in addition to cash);

• **Cardholders can not internalize retailers’ net avoided costs** from credit card usage (merchant fee minus cost of store credit);

• Model the **excessive usage** of credit cards: increase interchange fee can reduce consumers aggregated welfare;
Results under non surcharge rule
Rochet&Wright (JBF 2010)

• Single price equilibrium;

• Interchange fee is not neutral:
 – It affects card usage (real allocations);
 – There is an endogenous cap:
 • The monopoly card network raise it to increase credit card usage and maximize profit;
 • If sufficiently high, merchants do not adhere to the credit card system;
 • The cap value exceeds the level that maximizes consumer surplus;
Results under non surcharge rule
Rochet&Wright (JBF 2010)

• If regulators only care about consumer surplus:
 – A conservative regulatory approach is to cap interchange fees based on retailers’ net avoided costs from not having to provide credit themselves.
 – This always raises consumer surplus compared to the unregulated outcome, sometimes to the point of maximizing consumer surplus.
Consumer’s welfare under single price equilibrium
Methodology

• Three payment instruments: credit card, store credit and cash;

• Two types of purchases:
 – ordinary purchases (deterministic, using any of the three instruments)
 – extraordinary credit purchases (random, can not use cash);

• Two retailers dispute the market where consumers incur in transportation costs (Hotelling competition);

• Compute:
 – Consumers utilities;
 – Merchants market shares;
 – Merchants margins;
 – Merchants profits (margin x market share);

• Apply first order conditions to obtain equilibrium prices;
Model structure with price differentiation

\[p^c = p^r + \Delta^c \]

\[m = c_A + a \]

\[f = c_I + \pi - a \]

\[y \]

\[c_S \]

\[c_B \]

\[x = \text{proportion of credit card owners} \]

\[\text{store credit costs} \]

\[\text{random with c.d.f. } H \]

\[\gamma \]

\[\text{product cost} \]

\[\text{merchand fee} \]

\[\text{interchange fee} \]

\[\text{credit card costs} \]

\[\text{profit margin} \]

\[\text{Store credit} \]

\[\text{Credit card} \]
Hotelling competition with transportation costs

Transportation costs

$S_1 \cdot t$

$S_2 \cdot t$

Consumer

Retailer 1

Retailer 2

Distances

S_1

S_2
Store credit random cost faced by consumers (ordinary purchases)

When credit card is not an option

When credit card is an option

with a cost

with a benefit

\[CB \]

\[0 \]

\[\text{cash} \]

\[\text{store credit} \]

\[CB \]

\[0 \]

\[f + \Delta^c \]

\[\text{cash} \]

\[\text{store credit} \]

\[CB \]

\[0 \]

\[f + \Delta^c \]

\[\text{credit card} \]

\[\text{store credit} \]
Store credit random cost faced by consumers (extraordinary purchases)

When credit card is not an option

When credit card is an option
 with a cost
 with a benefit

\[C_B \]

\[\Delta c \]

\[f \]

\[H \text{ probability distribution} \]

store credit

credit card

store credit

store credit
Indicators of acceptance

• Does the **consumer** use of credit cards instead of cash at the retailers i?

$$L_c^i = \begin{cases}
1 & \text{if credit card (or } f + \Delta_i^c \leq 0) \\
0 & \text{if cash}
\end{cases}$$

• Does the **retailer** i adhere to the credit card system?

$$L_r^i = \begin{cases}
1 & \text{if adhere system} \\
0 & \text{otherwise}
\end{cases}$$
Consumer’s expected utility

\[U_i = u_0 + \theta u_1 - (1 + \theta) p_i^r - \int_{c_B}^{0} c_B . dH(c_B) - \theta . E(c_B) + x . L_i^r . S(a, \Delta^c_i) \]

where

\[S(a, \Delta^c_i) := (L^c_i + \theta) \left(\int_{f + \Delta^c_i}^{c_B} (c_B - f - \Delta^c_i) . dH(c_B) \right) - L^c_i \int_{0}^{c_B} c_B . dH(c_B) \]

Utility of an ordinary purchases.
Cost of all purchases
Utility of extraordinary (credit) purchase with probability \(\theta \).
Cost of the store credit transactions (if \(x=0 \)).
Benefit from credit card transactions.
Cost savings from substituting store credit for credit card.
Indifferent consumer and retailers’ market shares

\[U_1 - s_1 t = U_2 - s_2 t \]

\[s_2 = 1 - s_1 \]
Retailer’s market share

\[(U_i - s_i.t) - (U_j - (1 - s_i).t) = 0\]

\[(1 + \theta) \left(p_j^r - p_i^r \right) + x \left(L_i^r \bar{S}(a, \Delta_i^c) - L_j^r \bar{S}(a, \Delta_j^c) \right) + t - 2.t.s_i = 0\]

\[s_i = \frac{1}{2} + (1 + \theta) \left(\frac{p_j^r - p_i^r}{2.t} \right) + x \left(\frac{L_i^r \bar{S}(a, \Delta_i^c) - L_j^r \bar{S}(a, \Delta_j^c)}{2.t} \right)\]

zero when in equilibrium
Retailer’s expected margin

\[M_i = \left(1 + \theta\right)(p_i^r - \gamma) - \left(H(0) + \theta\right)c_S - xL_i^r\overline{\Gamma}(a, \Delta_i^c) \]

Revenue net of product cost.
Cost of store credit transactions (if \(x = 0 \))
Cost of credit card transactions

where

\[\overline{\Gamma}(a, \Delta_i^c) := (1 + \theta)\left[1 - H(f + \Delta_i^c)\right]\left(m - \Delta_i^c - c_S\right) + \left[1 - H(0)\right]c_S \]

Cost of credit card transactions
Retailers’ profits

\[\pi_i = S_i \cdot M_i \]
Equilibrium prices under price differentiation

\[
\overline{p}^r = \gamma + \left\{ t + \left(H(0) + \theta \right) c_s + x(1 - H(0)) c_s \right\} \frac{1}{(1 + \theta)}
\]

Use store credit when there is no cardholders.

Use the credit card instead of cash.

Subsidy to credit card users

\[
\overline{p}^c = \overline{p}^r + m - c_s
\]

Retailers avoided cost

\[
\overline{\Delta}^c
\]
Rochet&Wright’s single price

\[
\bar{p} = \gamma + \left\{ t + (H(0) + \theta)c_s - x(H(0) - H(\bar{f})).c_s + x(1 - H(\bar{f})).m \right\}.\frac{1}{1 + \theta}
\]

- Use store credit if there is not cardholders.
- Abandon the store credit to use the credit card.
- Use credit cards
Cross subsidies under price differentiation

1) Cash:

\[\bar{p} = \gamma + \frac{t}{1 + \theta} + \left(1 - \frac{(1 - x)[1 - H(0)]}{1 + \theta}\right)c_s + x[1 - H(f)](m - c_s) \]

- Product cost
- Transportation Markup
- Subsidy paid

Eliminated with price differentiation

2) Store credit:

\[\bar{p} = \gamma + \frac{t}{1 + \theta} + c_s - \frac{(1 - x)[1 - H(0)]}{1 + \theta}c_s + x[1 - H(f)](m - c_s) \]

- Store credit cost
- Subsidy received
- Subsidy paid

3) Credit card:

\[\bar{p} = \gamma + \frac{t}{1 + \theta} + m - \frac{(1 - x)[1 - H(0)]}{1 + \theta}c_s - \{1 - x[1 - H(f)]\}(m - c_s) \]

- Merchant fee
- Subsidy received
- Subsidy received
Mean price under price differentiation

Single price

\[\bar{p} = (1 - \alpha_0) \cdot \bar{p}^r + \alpha_0 \cdot \bar{p}^c \]

where \(\alpha_0 := x.\lfloor 1 - H(f) \rfloor \) is the proportion of credit card owners that, under no-surcharge rule, prefer credit cards.

But \(\alpha_\Delta = x.\lfloor 1 - H(f + \bar{\Delta}^c) \rfloor \) is the proportion of credit card owners that, under price differentiation, prefer credit cards.

Then \(\bar{\Delta}^c > 0 \implies \alpha_0 > \alpha_\Delta \) and \(\bar{p}^c > \bar{p}^r \)

\[\bar{p} > (1 - \alpha_\Delta) \cdot \bar{p}^r + \alpha_\Delta \cdot \bar{p}^c \]

mean price under price differentiation
Consumers’ welfare under price differentiation
Results under price differentiation
Valli&Maldonado (WP 2013)

• Unilateral movement to unique price strategy:

Retailer 1

Retailer 2

Retailer 1

Retailer 2

credit cards

cash/store credit

credit cards

cash/store credit
Retailers’ profits under price differentiation

<table>
<thead>
<tr>
<th>Retailers’ profits</th>
<th>Retailer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential prices</td>
<td>Single price</td>
</tr>
<tr>
<td>Retailer 1</td>
<td></td>
</tr>
<tr>
<td>Differential prices</td>
<td>$t/2 ; t/2$</td>
</tr>
<tr>
<td>Single price</td>
<td>$t/2 - \varepsilon (1-\varepsilon/2t) ; t/2 + \varepsilon/2$</td>
</tr>
</tbody>
</table>

\[
\varepsilon(a) := \frac{1}{2} x (1 + \theta) \int_{a}^{1-\delta-c_{B}-c} (-\delta - c_{B}) \, dH(c_{B})
\]

welfare gain of consumers and retailers from price differentiation equilibrium compared with the single price equilibrium
Margins with menu costs

\[M_i^\mu := (1 + \theta)(p_i^r - \gamma) - (H(0) + \theta)c_S - x.L_i^r \bar{\Gamma}(a, \Delta_i^c) - \mu_i \cdot I(\Delta_i^c) \]

where \[I(\Delta_i^c) := \begin{cases} 0 & \text{if } \Delta_i^c = 0 \\ 1 & \text{if } \Delta_i^c \neq 0 \end{cases} \]
Equilibrium prices under price differentiation with menu costs

\[
\bar{p}^{r,\mu}_1 = \bar{p}^r + \frac{1}{1+\theta}\left(\frac{2.\mu_1 + \mu_2}{3}\right) \\
\bar{p}^{r,\mu}_2 = \bar{p}^r + \frac{1}{1+\theta}\left(\frac{\mu_1 + 2.\mu_2}{3}\right)
\]

\[
\bar{p}^{c,\mu}_i = \bar{p}^{r,\mu}_i + \bar{\Delta}^c
\]

Sufficient conditions: \(\mu_1 \geq \mu_2\) \quad \(t \geq \frac{\mu_1 - \mu_2}{3}\) \quad \(\varepsilon(a) > \frac{\mu_1}{2}\)
Retailers’ profits under price differentiation with menu costs

<table>
<thead>
<tr>
<th>Retailers’ profits under price differentiation and menu costs</th>
<th>Retailer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Prices</td>
<td>Single Price</td>
</tr>
<tr>
<td>t/2 ((1-\alpha)^2); t/2 ((1+\alpha)^2)</td>
<td>t/2 ((1 - \alpha).(1 - \alpha+\beta_2)); t/2 ((1 + \alpha - \beta_2)^2)</td>
</tr>
<tr>
<td>t/2 ((1-\alpha-\beta_1)^2); t/2 ((1 + \alpha).(1+\alpha+\beta_1))</td>
<td>t/2 ((1+\beta_1)^2); t/2 ((1-\beta_1)^2)</td>
</tr>
<tr>
<td>t/2 ((1-\beta_2)); t/2 ((1+\beta_2)^2)</td>
<td>t/2 ; t/2</td>
</tr>
</tbody>
</table>

0 < \(\alpha := \frac{1}{t} \left(\frac{\mu_1 - \mu_2}{3} \right) \) < 1

0 < \(\beta_i(a) := \frac{1}{t} \left(\varepsilon(a) - \frac{\mu_i}{2} \right) \) < 1
Conclusions

• **Without menu costs:**

 – *Single price is not equilibrium*: there are incentives to decide unilaterally to surcharge card transactions;

 – *There is equilibrium with differential prices*: the equilibrium surcharge, or spread, is equal to the merchant fee minus the cost of the store credit ("retailer’s net avoided cost": $m - c_s$);

 – *The interchange fee becomes neutral*: does not affect card usage;

 – *Merchants are indifferent with respect the non-surcharge rule*: same profit with or without differentiation;

 – *Consumers obtain maximum welfare*: the welfare under differentiation is equal to the maximum utility under non-surcharge, independently of the interchange rate (neutral) ;
Conclusions

• With menu costs:

 – Interchange fee is **not neutral** anymore:
 • If low: single price equilibrium;
 • If high: differential prices equilibrium;
 • **Endogenous cap**: a high interchange fee can deviate merchants from the single price, limiting the market power of the credit card system (“excessive” usage of credit cards);

 – **Retailer with the highest (smallest) menu cost have a smaller (higher) profit** than under no-surcharge single price equilibrium;

 – **Card system** has a smaller profit, because the **volume of transactions decrease**;

 – **Consumers increase welfare** compared with non-surcharge single price equilibrium, despite the menu costs.
THE END

Thank you!!

Email: marcos.valli@bcb.gov.br