Search with Wage Posting Under Sticky Prices

Andrew Foerster Jose Mustre-del-Rio

Federal Reserve Bank of Kansas City

May 2015

The views expressed herein are solely those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of Kansas City or the Federal Reserve System.
Introduction

After Great Recession, Sluggish Labor Market with Low Inflation
Importance of Frictions in Pricing Behavior – Nominal Rigidities
Importance of Frictions in Labor Market – Search Models
Interest in Interaction Between Pricing and Labor Market Frictions
 • Many Papers Include these Two
 • Typical Assumption for Tractability: Split Frictions
We Address this Assumption, Show it Matters
 • Changes in Unemployment Benefits
 • Response to Shocks
 • Volatility of the Labor Market
Our Model versus an Alternative

- **Objective:** Compare and Contrast Models
- **Alternative:** Separates Frictions (*Walsh (2005), Trigari (2006))*
 - Wholesaler Firms: Act in Labor Market, Produce Competitive Good
 - Retailer Firms: Buy Wholesale Good Competitively, Act in Product/Pricing Market with Power
 - Firms Don’t Internalize the Effects of Other Friction
- **Baseline Model:** Develop a Framework Where Firms...
 - Post Vacancies
 - Offer Workers an Hours-Compensation Contract
 - Make Pricing Decisions
 - Internalize the Effects of All Frictions
Importance of Our Environment

- Once Combine Frictions, What is Bargained Over Changes
 - Firm has Market Power
 - Worker Input into Price Setting? Firm Size?
 - Perfect Consumption Insurance in Household
 - Result: Contracts Look Very Different, Introducing Many Channels not Present in the Standard Model
- Benefits of Wage Posting
 - Contracts Identical in Both Models
 - Eliminate Representative Household Assumption
- Other Features of Wage Posting
 - Severs Link Between Compensation and Agg. Labor Market Tightness
 - Posting at Least as Common as Bargaining (Hall and Krueger (2012))
Model Overview

- Individuals: Consume, Work, Save, Search for Employment
- Final Goods Firms: Aggregate Intermediate Goods
- Intermediate Goods Firms
 - Post Vacancies and Wages
 - Monopolistically Competitive with Sticky Prices
- Policy: Taylor Rule, Lump-Sum Taxes
- Alternative Model Splits Producing Firms
 - Wholesale Firms: Post Vacancies and Wages, Competitive Markets
 - Retail Firms: Purchase Wholesale Good, Sticky Prices
- Calibrate to Match Same Steady State Targets
Individuals

- Utility Function

\[U(c_{i,t}, h_{i,t}) = \frac{\left(c_{i,t} - \varphi h_{i,t}^{1+1/\psi}\right)^{1-\gamma} - 1}{1 - \gamma} \]

- Benefits of GHH Preferences (and Assumption on Initial Condition)
 - Simplifies Contracting Environment
 - Prevents Counterfactual Asset/Wage Behavior (Mustre-del-Rio (2014))
 - Dispatch with Large Household Assumption
 - No Consumption Insurance
 - Hours Optimal from Individual’s Perspective
 - Still Get Nice Aggregation
Individuals

- Unemployed Individual

\[W_{i,t}^{u} = \max_{c_{i,t}^{u}, B_{i,t}^{u}} \left\{ U \left(c_{i,t}^{u}, 0 \right) + \beta \mathbb{E}_t \left[s_t W_{i,t+1}^{e} + \left(1 - s_t \right) W_{i,t+1}^{u} \right] \right\} \]

s.t. \(P_t c_{i,t}^{u} + B_{i,t}^{u} + P_t T_t = P_t b + R_{t-1} B_{i,t-1} + D_t \)

- Employed Individual

\[W_{i,t}^{e} = \max_{c_{i,t}^{e}, B_{i,t}^{e}} \left\{ U \left(c_{i,t}^{e}, h_{i,t}^{e} \right) + \beta \mathbb{E}_t \left[\left(1 - \delta_t \right) W_{i,t+1}^{e} + \delta_t W_{i,t+1}^{u} \right] \right\} \]

s.t. \(P_t c_{i,t}^{e} + B_{i,t}^{e} + P_t T_t = P_t \omega_{i,t} + R_{t-1} B_{i,t-1} + D_t \)
Intermediate Goods Firms

- **Production**
 \[Y_{j,t}^s = Z_t h_{j,t} \]

- **Take-it-or-leave-it Contract**
 \[Y_{j,t} = (\omega_{j,t}, h_{j,t}) \]

- **Optimal Contract**: Worker Indifferent Between Working and Not
 \[\omega_{j,t} = b + \varphi h_{j,t}^{1 + \frac{1}{\psi}} = b + \varphi \left(\left(\frac{P_{j,t}}{P_t} \right)^{-\epsilon} \frac{Y_t}{Z_t n_t} \right)^{1 + \frac{1}{\psi}} \]

- **Dispersion of** \((\omega_{j,t}, h_{j,t})\) **via Prices**
Price Setting

- **Value Function of Firm**

\[
J_t (P_{j,t}) = \left(\frac{P_{j,t}}{P_t} \right) Y_{j,t}^d - \omega_{j,t} \\
+ \beta (1 - \delta_t) \mathbb{E}_t \frac{\lambda_{t+1}}{\lambda_t} [\zeta J_{t+1} (P_{j,t}) + (1 - \zeta) J_{t+1} (P_{t+1}^*)] \\
= \left(\frac{P_{j,t}}{P_t} \right)^{1-\epsilon} Y_t \frac{n_t}{Z_t n_t} - b - \varphi \left(\left(\frac{P_{j,t}}{P_t} \right)^{-\epsilon} \frac{Y_t}{Z_t n_t} \right)^{1+\frac{1}{\psi}} \\
+ \beta (1 - \delta_t) \mathbb{E}_t \frac{\lambda_{t+1}}{\lambda_t} [\zeta J_{t+1} (P_{j,t}) + (1 - \zeta) J_{t+1}^*]
\]

- **Re-optimizers**

\[
P_t^* = \arg \max J_t (P_{j,t})
\]
Alternative Model

- Wholesale Firms
 \[Y_t^w = Z_t h_t \]
 \[J_t^w = \max_{h_t} \frac{P_t^w}{P_t} Z_t h_t - b - \varphi h_t^{1+1/\psi} + \beta (1 - \delta_t) \mathbb{E}_t \frac{\lambda_{t+1}}{\lambda_t} J_{t+1}^w \]

- Retail Firms
 \[Y_{j,t}^s \geq Y_{j,t}^d = \left(\frac{P_{j,t}}{P_t} \right)^{-\epsilon} Y_t \]
 \[J_t^r (P_{j,t}) = \left(\frac{P_{j,t}}{P_t} - \frac{P_t^w}{P_t} \right) Y_{j,t}^d + \beta \mathbb{E}_t \frac{\lambda_{t+1}}{\lambda_t} \left[\zeta J_{t+1}^r (P_{j,t}) + (1 - \zeta) J_{t+1}^r \right] \]
Model Comparison

- **Free Entry Condition: Wholesaler versus Baseline (Market Power)**

\[\kappa = q_t \beta \mathbb{E}_t \frac{\lambda_{t+1}}{\lambda_t} J^w_{t+1} \]

\[\kappa = q_t \beta \mathbb{E}_t \frac{\lambda_{t+1}}{\lambda_t} [\zeta J_{t+1} (P_t) + (1 - \zeta) J_{t+1} (P^*_t)] \]

- **First Order Condition: Retailer versus Baseline (Shocks)**

\[\sum_{k=0}^{\infty} (\beta \zeta)^k \frac{\lambda_{t+k}}{\lambda_t} \left[\frac{P^*_t}{P_{t+k}} - \mu \frac{P^w_{t+k}}{P_{t+k}} \right] Y_{t+k} P^e_{t+k} = 0 \]

\[\sum_{k=0}^{\infty} (\beta \zeta)^k \prod_{i=1}^{k} (1 - \delta_{t+k-i}) \frac{\lambda_{t+k}}{\lambda_t} \left[\frac{P^*_t}{P_{t+k}} - \mu \frac{\varphi (1 + 1/\psi) h_{j,t+k}^{1/\psi}}{Z_{t+k}} \right] \frac{Y_{t+k}}{n_{t+k}} P^e_{t+k} = 0 \]
Calibration

- Most Parameters Standard From Literature
- Set of Parameters to Match Consistent Targets Across Models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Target</th>
<th>Baseline</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ</td>
<td>Disutility of labor</td>
<td>$h_{j,ss} = 1/3$</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>b</td>
<td>Unemployment benefits</td>
<td>$b/\omega_{ss} = 1/2$</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>σ_m</td>
<td>Matching efficiency</td>
<td>$u_{ss} = 0.11$</td>
<td>0.7526</td>
<td>0.7526</td>
</tr>
<tr>
<td>κ</td>
<td>Vacancy posting</td>
<td>$q_{ss} = 0.70$</td>
<td>0.8895</td>
<td>0.6671</td>
</tr>
</tbody>
</table>
Results Overview

- Compare and Contrast Baseline and Alternative Models
- Show a Subset of Results
- Steady State Effect of Changing Unemployment Benefits
 - Matters via Free Entry Condition
 - Highlights Market Power
- Impulse Responses
 - Baseline Model: All Shocks hit Same Firm
 - Alternative: Shocks Hit Different Firms
 - Highlight Sticky Prices by Considering Flexible Prices
- Labor Market Ratios
 - In Aggregate and Decompose Effects of Each Shock
 - Highlight Sticky Prices by Considering Flexible Prices
Changing Unemployment Benefits

Output (%)

Unemployment Benefits

Average Hourly Wage (%)

Unemployment Rate (pp)

Vacancies Rate (pp)

V/U Ratio (pp)

Baseline Model Alternative Model
TFP Shock: Sticky Prices

Output (%)

Avg Hours per Worker (%)

Avg Hourly Wage (%)

Inflation (pp)

Nominal Rate (pp)

Markup (%)

Unemployment (pp)

Vacancies (pp)

V/U Ratio (pp)

Baseline Model

Alternative Model
Separation Rate Shock: Flexible Prices

![Graphs showing the impact of separation rate shocks on various economic indicators, comparing Baseline Model and Alternative Model.](graph.png)
Separation Rate Shock: Sticky Prices
Labor Market Ratios: Flexible versus Sticky Prices

<table>
<thead>
<tr>
<th></th>
<th>$\frac{\text{std} (v/u)}{\text{std} (Y)}$</th>
<th>$\text{corr} (u, v)$</th>
<th>$\frac{\text{std} (n)}{\text{std} (Y)}$</th>
<th>$\frac{\text{std} (h)}{\text{std} (Y)}$</th>
<th>$\frac{\text{std} (w)}{\text{std} (Y)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible Prices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>11.9971</td>
<td>-0.5344</td>
<td>0.7724</td>
<td>0.3176</td>
<td>0.2858</td>
</tr>
<tr>
<td>Alternative</td>
<td>12.9331</td>
<td>-0.5688</td>
<td>0.7880</td>
<td>0.3113</td>
<td>0.2801</td>
</tr>
<tr>
<td>Sticky Prices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>7.1798</td>
<td>-0.1872</td>
<td>0.5373</td>
<td>0.8405</td>
<td>1.0325</td>
</tr>
<tr>
<td>Alternative</td>
<td>11.2575</td>
<td>-0.5469</td>
<td>0.6932</td>
<td>0.5480</td>
<td>0.4932</td>
</tr>
</tbody>
</table>
Labor Market Ratios: Sticky Prices

<table>
<thead>
<tr>
<th></th>
<th>$\frac{\text{std}(v/u)}{\text{std}(Y)}$</th>
<th>$\text{corr}(u,v)$</th>
<th>$\frac{\text{std}(n)}{\text{std}(Y)}$</th>
<th>$\frac{\text{std}(h)}{\text{std}(Y)}$</th>
<th>$\frac{\text{std}(w)}{\text{std}(Y)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>7.1798</td>
<td>-0.1872</td>
<td>0.5373</td>
<td>0.8405</td>
<td>1.0325</td>
</tr>
<tr>
<td>Alternative</td>
<td>11.2575</td>
<td>-0.5469</td>
<td>0.6932</td>
<td>0.5480</td>
<td>0.4932</td>
</tr>
<tr>
<td>Tech Shock Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>7.5317</td>
<td>-0.8716</td>
<td>0.3177</td>
<td>0.4717</td>
<td>1.0854</td>
</tr>
<tr>
<td>Alternative</td>
<td>10.2425</td>
<td>-0.9236</td>
<td>0.4328</td>
<td>0.4364</td>
<td>0.3928</td>
</tr>
<tr>
<td>MP Shock Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>2.0559</td>
<td>-0.2291</td>
<td>0.0841</td>
<td>1.1250</td>
<td>0.7230</td>
</tr>
<tr>
<td>Alternative</td>
<td>1.1382</td>
<td>-0.0101</td>
<td>0.0458</td>
<td>1.1230</td>
<td>1.0107</td>
</tr>
<tr>
<td>Sep Shock Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>7.6067</td>
<td>0.5928</td>
<td>0.8159</td>
<td>1.1353</td>
<td>1.0281</td>
</tr>
<tr>
<td>Alternative</td>
<td>17.4045</td>
<td>-0.2365</td>
<td>1.6273</td>
<td>0.9610</td>
<td>0.8649</td>
</tr>
</tbody>
</table>
Conclusion

- Develop a Model of Search with Wage Posting under Sticky Prices
- Compare and Contrast with Alternative Model
- Contracts Identical in Two Models
- Show Combining Frictions has Important Effects
 - Sensitivity to Unemployment Benefits
 - Response to Shocks
 - Volatility of the Labor Market
- Implications for Estimating Models