

Breakdown of covered interest parity: Mystery or myth?

Joint work with Alfred Wong

Jiayue Zhang Hong Kong Monetary Authority

XII Annual Seminar on Risk, Financial Stability and Banking of the Banco Central do Brasil 9-11 August, 2017 | São Paulo, Brazil

^{*}The views expressed here are solely the responsibility of the authors and should not be interpreted as reflecting the views of Hong Kong Monetary Authority.

Overview

CIP deviation in FX swap and CCBS markets

- Until 2007, CIP was one of the most reliable parity conditions in international finance
- Since GFC, textbook arbitrage has emerged in the cross-currency market

$$\frac{F_t}{S_0} \neq \left(\frac{1 + r_{0,t}}{1 + q_{0,t}}\right)^t$$

Not a dollar-specific phenomenon

Overview

Literature and contribution

- Voluminous literature studying CIP deviation, attributing the phenomenon to
 - Credit risk and/or liquidity risk (Baba & Packer, 2009, Fukuda, 2016, Iida, Kimura & Sudo, 2015, Liao, 2016, Tuckman & Porfirio, 2003)
 - Regulatory/balance sheet constraints (Borio et al., 2016, Duffie, 2016)
 - Dollar shortage (Bottazzi et al., 2013, Du, Tepper & Verdelhan, 2017), dollar hedging demand (Sushko et al., 2017)
- Multi-curve modelling in finance literature shed light on the paradigm shift in pricing swaps since GFC
 - ❖ Interest rate swap valuation involves one risk-free rate curve for discounting and another risk-embedded curve for estimating future cash flows (Bianchetti, 2009, Grbac, 2015, Memouni, 2015, Mercurio, 2010)
- This paper contributes by studying major currency pairs, and found
 - There are no arbitrage opportunities
 - CIP adjusted by counterparty risks is still valid

No arbitrage opportunities

CCBS basis matrix

- CCBS basis matrix $A_n = (\alpha_{i,j})_{i,j=1}^n$ satisfies: $\alpha_{i,j} + \alpha_{j,k} = \alpha_{i,k}$
 - * Property 1: $\alpha_{i,i} = 0$ for i = 1,2,...,n
 - * Property 2: $\alpha_{i,j} + \alpha_{j,i} = 0$ for i, j = 1, 2, ..., n
 - * Property 3: The basis matrix can be entirely determined by its ith row, where i = 1, 2, ..., n.

CCBS roundtrip arbitrage

	Currency i	Currency j	Currency k		
	Gross	cash flows of three c	contracts		
t = 0	1	$-S_i$			
t = 1	$-r_i$	$S_j(r_j + \alpha_{i,j}) \\ S_j$			
t = 1	-1	S_{j}			
t = 0		S_{j}	$-S_k$		
t = 1		$-S_j r_j \\ -S_j$	$S_k(r_k + \alpha_{j,k})$		
t = 1		$-S_j$	S_k		
t = 0	-1		S_k		
t = 1	$r_i + \alpha_{k,i}$		$-S_k r_k$		
t = 1	1		$-S_k$		
		Net cash flows			
t = 0	0	0	0		
t = 1	$lpha_{k,i}$	$S_j \alpha_{i,j}$	$S_k \alpha_{j,k}$		
	USD EUR	R GBP CHF	JPY		
USD	0 -33.1	-7.4 -35.5	-57.8		
EUR	33.1 0	25.8 -1.9	-24.7		
GBP	7.4 -25.8	0 -27.6	-50.4		
CHF	35.0 1.9	27.6 0	-22.8		
JPY \	57.8 24.7	50.4 22.8	0/		
	USD EUR	R GBP CHF	JPY		
USD	0 -33.1	-6.9 -35.6	-58.5		
EUR	33.1 0		-25.4		
GBP		0 -28.8	-51.6		
CHF		28.8 0	-22.9		
JPY \	58.8 25.4	51.6 22.9	0 /		
	-		•		

CIP adjusted by counterparty risks

Interbank loan: uncollateralized

FX swap and CCBS: collateralized

Why no bases before the GFC?

$$\omega_{\,\in\,} = \omega_{\,\$} = 0$$

Libor-OIS spread increases since 8 Aug 2007

CIP adjusted by counterparty risks

 Aware of the counterparty risks embedded in Libors, it is fair for market participants to adjust for the risks when valuing a product of different risk profile

$$\frac{F}{S} = \frac{1+r-\omega_r}{1+q-\omega_q}$$

$$= \frac{1+r-\beta(r-r_f)}{1+q-\gamma(q-q_f)}$$

Exclude counterparty risks from the interbank rate

However, FX swaps or CCBS are not totally risk-free

$$\frac{F}{S} = \frac{1 + r_f + (1 - \beta)(r - r_f)}{1 + q_f + (1 - \gamma)(q - q_f)}$$

Include funding liquidity risks to the risk-free rate

Estimation

Rearranging the previous equation,

$$\frac{F}{S} = \frac{1 + \beta r_f + (1 - \beta)r}{1 + \gamma q_f + (1 - \gamma)q}$$

Log transformation

$$lnF - lnS \approx \beta r_f - \gamma q_f + (1 - \beta)r - (1 - \gamma)q$$

Estimating equation

$$\Delta F p_t = C_0 + C_1 \Delta OIS_t^{FC} + C_2 \Delta OIS_t^{DC} + C_3 \Delta IRS_t^{FC} + C_4 \Delta IRS_t^{DC} + \varepsilon_t$$

Hypothesis

• Hypothesis 1: $C_0 = 0$

• Hypothesis 2a: $C_1 + C_3 = 1$

❖ Hypothesis 2b: $C_2 + C_4 = -1$

Data

- 5-year CCBS of 7 currency pairs involving 5 major currencies
 - ❖ EUR, GBP, CHF and JPY vis-à-vis USD
 - ❖ GBP, CHF, and JPY vis-à-vis EUR
- Sample period covers Sep 22, 2009 to Jun 30, 2017
- All data collected from Bloomberg with daily frequency

Metadata

	USD	EUR	GBP	CHF	JPY	
Reference rate Payment frequency	3M Libor Quarterly	3M Euribor Annually	<u>IRS rates</u> 3M Libor Quarterly	3M Libor Annually	6M Libor Semi-annually	
Reference rate	Effective Fed funds rate	Euro overnight index average	OIS rates Sterling overnight index average	Tom/next indexed swap in CHF fixing	Tokyo overnight average rate	
Description	A weighted average of rates on trades arranged by major brokers	A weighted average of overnight unsecured lending rates in the interbank market, initiated within the Euro area by contributing banks	A weighted average rate of unsecured sterling overnight cash transactions brokered in London by WMBA member firms	Based on quotations from approximately 30 reference banks for its Tom/next unsecured lending rate to prime banks, supplied to Cosmorex AG	Based on uncollateralized overnight average call rates for lending among financial institutions, published by Bank of Japan	
Published by	Federal Re- serve Bank New York	European Central Bank	Wholesale Markets Brokers' Association	Cosmorex AG	Bank of Japan	

Descriptive statistics

	USD	EUR	GBP	CHF	JPY		USD	EUR	GBP	CHF	JPY
5-year forward premium (annualized, %) vis-à-vis USD					5-year OIS rate (%)						
Mean	<u>*</u>	-0.93	-0.15	-1.77	-2.01	Mean	1.34	0.78	1.30	0.14	0.14
Median		-0.75	-0.04	-1.51	-2.06	Median	1.37	0.63	1.18	0.13	0.15
Maximum		0.69	0.62	-0.57	-1.10	Maximum	2.79	2.82	3.11	1.60	0.57
Minimum		-2.58	-1.59	-3.19	-2.93	Minimum	0.47	-0.47	0.13	-0.95	-0.37
Std. Dev.		0.82	0.47	0.66	0.40	Std. Dev.	0.53	0.85	0.68	0.61	0.17
Obs.		2,029	2,029	2,029	2,029	Obs.	2,029	2,029	2,029	1,899	2,029
5-year forward premium (annualized, %) vis-à-vis EUR					5-year IRS-OIS spread (bps)						
Mean			0.78	-0.84	-1.08	Mean	26.3	22.7	25.6	5.2	11.2
Median			0.65	-0.80	-0.94	Median	25.1	19.6	22.7	9.2	10.5
Maximum			2.02	-0.26	0.01	Maximum	55.7	57.6	66.4	32.3	21.6
Minimum			-0.36	-1.57	-3.11	Minimum	13.0	7.3	12.1	-18.1	2.6
Std. Dev.			0.51	0.28	0.69	Std. Dev.	7.1	9.6	8.4	9.3	4.0
Obs.			2,029	2,029	2,029	Obs.	2,012	2,029	1,978	1,887	2,029
	5	-year IRS r	rate (%)								
Mean	1.60	1.01	1.55	0.27	0.26						
Median	1.60	0.83	1.45	0.25	0.25						
Maximum	2.94	3.10	3.34	1.73	0.78						
Minimum	0.72	-0.34	0.30	-1.00	-0.24						
Std. Dev.	0.50	0.93	0.69	0.72	0.19						
Obs.	2,012	2,029	1,978	2,015	2,029						

Results

Unrestricted model

$$\Delta F p_t = C_0 + C_1 \Delta O I S_t^{FC} + C_2 \Delta O I S_t^{DC} + C_3 \Delta I R S_t^{FC} + C_4 \Delta I R S_t^{DC} + \varepsilon_t$$

Foreign currency	EUR	GBP	CHF	JPY	GBP	CHF	JPY	
	<u>Unrestricted model</u>							
		USD as dome			EUR as domestic currency			
Constant	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	
C1 (FC OIS)	0.7616***	0.4480***	0.1175***	0.1882***	0.4262***	0.0936**	0.2143***	
	(0.0382)	(0.0446)	(0.0346)	(0.0643)	(0.0505)	(0.0365)	(0.0694)	
C2 (DC OIS)	-0.1747***	-0.3682***	-0.1893***	-0.1606***	-0.7986***	-0.7096***	-0.7609***	
	(0.0333)	(0.0386)	(0.0556)	(0.0495)	(0.0486)	(0.0723)	(0.0629)	
C3 (FC IRS)	0.2246***	0.4979***	0.7899***	0.7243***	0.5343***	0.7506***	0.6860***	
,	(0.0368)	(0.0445)	(0.0453)	(0.0703)	(0.0514)	(0.0483)	(0.0742)	
C4 (DC IRS)	-0.8176***	-0.5927***	-0.8128***	-0.8196***	-0.2042***	-0.2913***	-0.2239***	
` ,	(0.0329)	(0.0376)	(0.0548)	(0.0495)	(0.0468)	(0.0699)	(0.0616)	
R-squared	0.7986	0.7104	0.6278	0.6873	0.6398	0.3742	0.5183	
Adj. R-squared	0.7982	0.7098	0.6270	0.6866	0.6390	0.3729	0.5173	
DW Statistics	2.3565	2.7895	2.5773	2.5067	2.5514	2.6928	2.6482	
Log Likelihood	14317	13587	12275	13400	13477	12328	13460	

Results

Sum of shares of counterparty and liquidity risks

Results

Restricted model

$$\Delta F p_t = C_0 + C_1 \Delta O I S_t^{FC} + C_2 \Delta O I S_t^{DC} + (1 - C_1) \Delta I R S_t^{FC} + (-1 - C_2) \Delta I R S_t^{DC} + \varepsilon_t$$

Foreign currency	EUR	GBP	CHF	JPY	GBP	CHF	JPY	
				D 1 . 1.1				
				Restricted model				
		USD as dome	stic currency		EUR as domestic currency			
Constant	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	
C1	0.7717 ***	0.4763 ***	0.1295 ***	0.2129***	0.4425 ***	0.1175 ***	0.2499***	
	(0.0365)	(0.0440)	(0.0345)	(0.0607)	(0.0503)	(0.0364)	(0.0655)	
C2	-0.1796***	-0.3998***	-0.1997***	-0.1703***	-0.7993***	-0.7238***	-0.7738***	
	(0.0326)	(0.0373)	(0.0544)	(0.0490)	(0.0465)	(0.0698)	(0.0612)	
R-squared	0.7985	0.7086	0.6254	0.6868	0.6377	0.3643	0.5175	
Adj. R-squared	0.7983	0.7083	0.6250	0.6864	0.6374	0.3636	0.5170	
DW Statistics	2.3618	2.8025	2.5797	2.5117	2.5587	2.6781	2.6547	
Log Likelihood	14317	13581	12269	13398	13471	12313	13458	

Conclusion

- Breakdown of CIP or the emergence of CCBS basis is no mystery, but reflects the currency-specific risk adjustment when pricing swaps
 - Excluding counterparty risk from Libor, or equivalently,
 - Including liquidity risk to OIS
- CCBS market is well-arbitraged regardless of regulatory changes