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Abstract

The Working Papers should not be reported as representing the views of Banco Cen-

tral do Brasil. The views expressed in the papers are those of the authors and do not

necessarily reflect those of Banco Central do Brasil.

In this paper we present systemic risk measures based on contingent claims ap-

proach, banking sector multivariate density and cluster analysis. These indicators

aim to capture credit risk stress and its potential to become systemic. The proposed

measures capture not only individual bank vulnerability, but also the stress depen-

dency structure between them. Furthermore, these measures can be quite useful for

identifying systematically important banks. The empirical results show that these

indicators capture with considerable fidelity the moments of increasing systemic risk

in the Brazilian banking sector in recent years.
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1 Introduction

Since the early 19th century it is well known that one bank may jeopardize the

soundness and/or confidence of the whole financial sector (Thornton (1802)). The

advances in information technology and computing sectors, among other factors,

have paved the way for financial innovation and strong and continuous integration

between global and local financial markets. As a consequence, the complexity and

systemic consequences of risk materialization have largely increased over time.

Unlike other types of risk to which financial institutions are exposed, systemic risk is

much more recognized for its effects rather than its causes. Systemic risk generally

occurs in many distinct forms and is the result of the interconnection of a number

of factors. These traits make it difficult to describe systemic risk clearly ex ante,

but, once materialized, this risk becomes easily identifiable. The consequences of

a systemic risk materialization can be quite dire, specially when affecting the real

sector.

Ever since the genesis of the discipline, researchers have tried to find ways to better

comprehend systemic risk and the means to mitigate it. The sub-prime crisis has

renewed the interest of academics, regulatory bodies and Central Banks on this issue.

The result was the production of a wide array of papers regarding the measurement

of systemic risk, its regulation and the identification of threats to financial system

stability.

The definition of systemic risk is the first step to measure it accurately. However,

despite the ever increasing number of works regarding this issue, there is still no

agreement over a unique systemic risk definition. For example, Kaufman (1995) de-

fines it as the risk of occurrence of a chain reaction of bankruptcies. The European

Central Bank (ECB (2004)), on the other hand, describes systemic risk as the prob-

ability that the default of one institution will make other institutions default. This

risk interdependence would harm liquidity, credit and the stability and confidence

of the markets. Acharya et al. (2009) affirm that systemic risk may be seen as

generalized bankruptcies or capital market freezing, which may cause a substantial

reduction in financial intermediation activities.

On the one hand, a wide spectrum of definitions may indicate the comprehension

2

4



of the various nuances of systemic risk. On the other hand, it makes systemic risk

measurement harder. Besides, it suggests the need for more than one type of measure

in order to properly capture the complexity and the adaptability of the financial

system. Using only one single measure might not be adequate or even possible as its

relative simplicity may not reflect an unpredicted aspect or a new mechanism created

by the market. On the contrary, a robust framework for monitoring and managing

financial stability must incorporate a range of perspectives and a continuous process

of revaluation of the financial system structure and adaptation of systemic risk

measures to reflect eventual changes. This premise is supported by the literature,

where one may find various models of systemic risk measurement.

Considering only the most recent literature, Lehar (2005) proposes a method, derived

from correlated assets portfolios, to measure systemic risk. Based on the structural

approach, he uses the contingent claims analysis to estimate the market value of a

bank’s assets and Monte Carlo simulations to encounter the probability of a these

assets falling below a given proportion of the total assets of the financial system.

Gray et al. (2008) also use the contingent claims analysis to provide a general form

of systemic risk measurement between countries and various sectors of the economy.

Other examples of systemic risk measuring are found in the literature, among then:

De Jonghe (2009) uses the extreme-value analysis; Acharya et al. (2010) use Sys-

temic Expected Shortfall (SES) to measure the contribution of each single financial

institution to systemic risk, i.e., its propensity to become undercapitalized when

the system is also undercapitalized. Brownlees and Engle (2010) measure systemic

risk by focusing on the Marginal Expected Shortfall (MES). They develop ways to

estimate and predict MES using econometric tools (GARCH and DCC - Dynamic

Conditional Correlation) together with non-parametric tail expectation estimators.

Using CDS (Credit Default Swap) of financial firms and correlations between their

stock returns, Huang et al. (2009) estimate a systemic risk indicator as the credit

portfolio’s expected loss that is above a proportion of a sector’s total obligations.

Huang et al. (2011) propose some methodological changes developed by Huang et al.

(2009), such as the heteroskedasticity of banks interconnectivity and the possibility

of estimating each bank’s contribution to systemic risk. Adrian and Brunnermeier

(2011) measure the Value of Risk (VaR) of the financial sector conditioned by the

VaR loss in one single bank of the system, denoted by CoVaR, using quantile re-
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gressions. Segoviano and Goodhart (2009) define the financial sector as a portfolio

of individual financial firms and build the multivariate density of this portfolio tail

adjusted with empirical data from each institution. This density provides some

measures of systemic risk.

In this paper we will define systemic risk as a consequence of an event that make

financial markets stop functioning properly, increasing asymmetric information. In

this outlook, prices no longer provide useful information for decision taking. Sys-

temic risk steams from different sources. In general, a systemic event starts with

a shock to a specific market, which is amplified through different channels to other

markets (including real sector). Credit risk is a very important risk source as well

as banks connectivity is an important amplifier. This paper focuses on systemic risk

that comes from bank credit risk and the connectivity of the banks.

This paper contributes to the systemic risk indicator construction literature in sev-

eral ways. First, using accounting data and following the approach in Souto et al.

(2009), we adapt the method for building the banking system multivariate density

proposed by Segoviano and Goodhart (2009). Accounting data becomes relevant

when analyzing banking system stability when Credit Default Swaps, stocks and

other public information are not available for every bank. Therefore, this paper

expands the applicability of the measures proposed by Segoviano and Goodhart

(2009) including the analysis of important banks which are not listed on the stock

exchange.

Second, we propose feasible new measures of systemic risk. One of the main critiques

on the methodology developed by Segoviano and Goodhart (2009) is the quadratic

growth of the dependency matrix. In order to circumvent this methodological limi-

tation, we propose indicators built upon the joint distribution of pairs of banks and

the analysis of clusters generated by the correlation of individual default probabil-

ity of each bank. We also propose indicators from the analysis of pairs of banks

that enable the measurement of the first effects of the bankruptcy of one bank over

the whole system. This indicator may be used to identify systematically important

banks. Third, we include the idea of Loss Given Default in the construction of risk

indicators. Fourth, we apply the measures proposed in this paper to the Brazilian

case to analyze the effects of the recent global crises on the banking system. The

empirical results show that the systemic risk proposed measures have features of
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early warning indicators, since they anticipate moments of stress in the market such

as the global and euro crisis.

The paper is organized as follows. Section 2 presents the methodology used to build

the systemic risk indicators. Section 3 present definitions of the indicators. Section

4 presents a detailed description of the data, and the empirical aspects of these

indicators, and the empirical analysis for the Brazilian case. Section 5 presents final

considerations.

2 Methodology

The structural approach is one of the most important methods of modeling the credit

risk of a loan portfolio. The basic premise of this approach lies in the stochastic

evolution of the value of the underlying asset through time and the default due to a

reduction of the value of an asset below a predefined barrier. Once the parametric

distribution of the underlying asset value and the corresponding value barrier are

defined, the probability of default can be calculated.

Assuming that the basic premise of the structural approach is valid, Segoviano

(2006) proposes a methodology, called CIMDO (for Consistent Information Multi-

variate Density Optimizing Methodology), to recover the multivariate distribution

of a portfolio based on the minimal cross-entropy approach presented by Kullback

(1959). The idea is to build a multivariate distribution that is updated with the

empirically observed barriers and individual probabilities of default. Once the mul-

tivariate distribution is calculated, it allows for a wide spectrum of financial stability

measures.

We follow a five steps methodology to develop the systemic risk measures proposed

in this paper. First, we obtain empirical individual probability of default for each

bank of the system, and estimate the implied market loss given default. Second,

we conceptualize each pair of bank as a portfolio. Third, for each portfolio, we

estimate a Bivariate Density making use of the Consistent Information Multivariate

Density Optimizing (CIMDO) (Segoviano (2006)), taking as input the probabilities

of default estimated in the first step. Fourth, we establish clusters of banks using

the correlation between the probabilities of default calculated in first step. Fifth,
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we estimate the proposed systemic risk indicators.

In order to estimate the probabilities of default we use the contingent claims ap-

proach. In this theoretical framework the firm’s asset value evolve stochastically

and credit risk is related to the possibility that the bank’s assets (granted loans) are

worth less than its obligations (deposits received) in T . If this risk materializes, the

bank will default. To evaluate the probability of credit risk materialization, we use

the contingent claims model proposed by Merton (1974).

The basic methodological idea of Merton (1974) is modeling bank capital as an

European call option, with strike price equal to the promised payment for the obli-

gations and maturity T, where T is the maturity of the bank’s obligations. Then,

considering the promised obligation payment as being the face value of contract

bonds F , in case of default, shareholders receive nothing, otherwise they receive the

difference between asset and debt values.

Although Merton’s theoretical model establishes that a default happens when the

asset values are lower than the face value of debts, in the real world, however,

default usually happens with higher asset values. This is due to contract breakage

or liquidity scarcity problems when the bank needs to sell assets or due to debt

renegotiation (Gray and Malone (2008)). In order to capture this characteristics,

we follow the literature using, as a trigger for default, a threshold called distress

barrier (DB), set to be higher than the face value of debts.

The distress barrier was based on the KMV model (KMV (1999) and KMV (2001)),

where the barrier level is calculated using accounting data and is defined as:

DB = (short-term debt) + α(long-term debt), (1)

where short term debts are those with maturity equal to or less than one year, while

long term debt has maturity greater than one year, and α is a parameter between 0

and 1, generally equal do 0.51.
1A practical rule to calculate the long-term component of the distress barrier established in

De Servigny and Renault (2007) is using 0.5 from long-term debt if the ratio between long-term

(LT) and short-term (ST) debts is lower than 1.5; otherwise, multiply long-term debt by (0.7 −
0.3ST/LT ).
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Applying the option pricing formula of Black and Scholes (1973) for the Merton

Model option, we have:

E = AN (d1)−DBe−rTN (d2), (2)

where r is the risk-free interest rate and N (.) is the rate of cumulative normal

standard distribution,

d1 =
ln
�
A
DB

�
+
�
r +

σ2
A

2

�
T

σA
√
T

(3)

and

d2 =
ln
�
A
DB

�
+
�
r − σ2

A

2

�
T

σA
√
T

. (4)

We assume that the firm’s asset values are log-normally distributes, which, according

to Crouhy et al. (2000) is a quite robust assumption. Then, the probability of default

of a bank in time horizon T is defined as:

PD = Prob(AT 6 DB)

= Prob(lnAT 6 lnDB)

= N

 
−
ln A0

DB
+
�
µA − 1

2
σ2
A

�
T

σA
√
T

!
= N (−d∗2). (5)

The PD above is the expected probability in t = 0 of a bank defaulting at T , when

the asset values is less than the distress barrier. Following the literature we will

define the time horizon T as one year.

N (d2) is the probability that the call option would be exercised, and the bank

wouldn’t default. So, 1−N (d2) = N (−d2) characterizes the probability of default.

However, while N (−d∗2) gives us the probability of default in a real world, N (−d2)
represents the probability of default in a risk-neutral world. In the real world,

investors demand a return rate µA higher than the risk-free return rate r used in
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a risk-neutral world. Then, d∗2 > d2, indicating that the risk-neutral probability of

default is an upper bound to the actual probability of default (N (−d∗2) < N (−d2)).
This paper is conservative using the risk-neutral probability of default.

From the equation (5), we can observe that the PD is a function of the distance

between the current value of the assets and the distress barrier DB. So, the distance

to the distress (D2D), considering the risk-neutral probability of default, is defined

as:

D2D = −d2 (6)

and gives us, in terms of standard deviations, how distant the market value of assets

is from the distress barrier.

The difference between the actual and risk-neutral probabilities of default can be

seen graphically in the figure 1. The actual and risk-neutral probabilities of default

are, respectively, the areas of the actual distributions of asset values (continuous

line) and adjusted to risk (dashed line) under the distress barrier.

Asset value

T

Actual
Probability
of Default

Risk-Neutral
Probability of Default

A0

Time

Asset Return
(µA)

Risk-Free Rate
(r) Distress Barrier

Distributions of asset value at T
(continuous line - actual distribution)
(dashed line - risk-neutral distribution)

Figure 1: Contingent Claims Approach

Source:Gray and Malone (2008)
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2.1 Loss Given Default

Besides individual PDs, we will use the expected loss concept to build systemic

risk indicators. The expected loss given default (LGD) is usually defined as the

incurred loss percentage over owed credit in case of default. When faced with the

counterpart’s default, the lender will recover only a fraction of the amount lent.

The percentage of recovered amount, called recovery rate (RR), complements the

LGD when recovery costs are null; RR + LGD = 1. There are three ways to

measure LGD: market LGD - observed from market prices of defaulted bonds or

marketable loans right after the actual default event; workout LGD - obtained from

the set of estimated cash flows resulting from the workout and/or collections process,

properly discounted, and the estimated exposure; and finally, the implied market

LGD - derived from risky (but not defaulted) bond the prices using a theoretical

asset pricing model (Schuermann (2004)). In this paper, we use the implied LGD.

Similarly to the case of PDs, there’s a distinction between actual and risk-neutral

recovery rates. To obtain the risk-neutral rate. The risk-neutral recovery rate is

lower than the actual counterpart. Therefore, actual LGD is higher than risk-neutral

LGD, given that LGD = 1−RR when recovery costs are null.

When considering bankruptcy administrative costs, denoted by ϕ, the implied LGD

in risk-neutral terms at time T can be estimated from the asset value at time t = 0

as:

LGD0 = 1− (1− ϕ) A0

DB
exp [rT ]

N (−d1)
N (−d2)

, (7)

being d1 e d2 defined as in equations (3) and (4).

Details on how to reach this formula can be found at 6.

We can then estimate at t the expected bank loss for time T, as being:

ELt = PDt.LGDt.EADt, (8)

where EAD (Exposure at Default) is the amount of the bank’s assets that are

exposed to losses due to its counterpart’s default.
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2.2 Cluster Definition

The clusters were established considering banks that are strongly related. The

definition of pairs of banks with more intense relationship is based on a concept

analogous to the distance between the knots of a web. Following Bonanno et al.

(2004), we define distance d(i, j) between banks i and j, as:

d(i, j) =
È
2(1− ρ(i, j)) (9)

where ρ(i, j) is the correlation between PDs of banks i and j. Having calculated

these distances, a Minimum Spanning Tree (MST) is drawn. Given a graph G,

a MST is a tree that minimizes the distance between the knots of G. Given the

distance definition above, theMST generated has the trait that knots connected by

a corner have lower distances and higher correlations.

2.3 Banking Portfolio Bivariate Density

The Consistent Information Multivariate Density Optimizing methodology or simply

CIMDO methodology, established in Segoviano (2006) is based on the concept of

cross-entropy introduced by Kullback (1959).

The CIMDO methodology can be used by considering the banking system as a

portfolio of N banks. However, we will consider a portfolio composed of two banks:

bank X and bank Y , with logarithmic returns defined as the random variables x

and y. It is assumed that the portfolio’s stochastic process bivariate distribution

follows a parametric distribution q(x, y) ∈ R2, called a prior distribution from now

on. The initial hypothesis about the distribution of returns is taken according to

economic hypotheses (default is deflagrated by the decline of asset value below a

given barrier) and theoretical models (structural approach), but not necessarily in

accordance with empirical observation.

The CIMDOmethodology allows for the inference of a bivariate distribution p(x, y) ∈
R2 (a posterior distribution) from the prior distribution. This is done by means

of an optimization process in which the prior density is updated with empirical

information extracted from PDs and DBs by means of the restrictions set. At the
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end of this process we will have Banking Portfolio Bivariate Densities for all pairs

of banks. Details about the optimization problem to recover the posterior density

can be found at Appendix II.

The Banking Portfolio Bivariate Density (BPBD) characterizes individual and joint

movement of asset values for the two banks of the portfolio. BPBD incorporates the

linear and non-linear distress dependencies between banks included in the portfolio.

Such dependency structure is characterized by the copula function related to BPBD,

called CIMDO copula, which changes for each time period in a way consistent with

the changes in the empirically estimated PDs. Therefore, the BPBD captures the

linear and non-linear distress dependency between the assets of the banks in the

portfolio and its changes throughout economic cycles2.

3 Financial Stability Indicators

The BPBD characterizes the probabilities of default of the banks included in the

portfolio, the stress dependency between them and changes in economic cycles. This

set of information allows us to analyze the financial stability indicators that quantify

(i) the common distress between banks, (ii) distress between specific banks and

(iii) distress in the system associated with a specific bank. This section presents

the systemic risk indicators proposed in this paper using BPBD, contingent claims

approach and cluster analysis.

Before defining the indicators, let’s formalize the joint, individual and conditional

probabilities calculated from BPBD. These probabilities are stability indicators by

themselves, as established in Segoviano and Goodhart (2009). As in the CIMDO

methodology presentation, we’ll consider, for parsimony, the banking system as be-

ing made of two banks, X and Y.

• Individual Probability of Default (PD(X))

The probability of bank X defaulting can be calculated from the marginal

distribution of BPBD:
2For more details regarding the copula associated with BPBD, see Segoviano and Goodhart

(2009).
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PD(X) = P (X ≥ DBx) (10)

=

+∞Z
−∞

+∞Z
DBx

×p(x, y)dxdy.
• Joint Probability of Default (PDConj(X,Y))

The probability that all the banks of the portfolio (banking system) default is

given by the joint probability of default (PDConj):

PDConj(X, Y ) = P (X ∩ Y ) (11)

= P (X ≥ DBx, Y ≥ DBy)

=

+∞Z
DBy

+∞Z
DBx

×p(x, y)dxdy.
• Conditional Probability of Default (PDCond(X,Y))

The probability of default of bank X given that bank Y has defaulted is given

by conditional probability:

PDCond(X, Y ) = P (X|Y ) (12)

= P (X ≥ DBx|Y ≥ DBy)

=
P (X ≥ DBx, Y ≥ DBy)

P (Y ≥ DBy)
.

Having formalized the individual, conditional e joint probability equations,

let’s define the systemic risk indicators proposed in this article. For such, con-

sider a banking system (portfolio) with N banks, denoted by B1, B2, . . . , BN .

• IndPD Indicator

The IndPD Indicator is built considering the average of the individual proba-

bilities of default weighted by assets:

IndPD =
NX
j=1
j 6=k

wjPD(Bj), (13)
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where wj is the ratio between the assets of bank Bj and the total assets of the

banking system.

This indicator is an upper bound to the probability of default of one or more

banks of the system. As it does not consider the dependency structure between

financial institutions, this bound is overestimated and must be seen as an

indicator of the stability tendency of the banking system. As the indicator

is made of the PDs of all banks, an increase in the PD of one single bank

would have to be quite large to change the whole tendency. That means that

changes in the indicator would only happen if the PD of more than one bank

also changed. Therefore, an increase in this indicator suggests that the banking

system as a whole is more exposed to systemic risk.

• IndPDcond indicator

The IndPDcond indicator is built considering the average of the conditional

probabilities of default weighted by assets:

for each k ∈ {1, 2, . . . , N} , we define:

IndPDCond =
NX
k=1

NX
j=1
j 6=k

wjP (Bj|Bk), (14)

where wj is the asset share of bank j compared to the total assets of the

system.

The IndPDCond indicator tries to capture the first round effects of the default

of one bank over the probability of default of other banks. The higher it is,

the higher is the vulnerability of the financial system and the higher is the

propagation possibility of shocks to the system.

This indicator can be calculated for several periods to allow for the analysis

of its evolution through time.

• IndPDConj Indicator

The IndPDConj Indicator is built considering the weighted average of the

probability that any two banks default at the same time:
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IndPDConj =
X
i6=j

wijPDConj(Bi ∩Bj), (15)

where i, j ∈ {1, 2, . . . , N} and wij are the shares of assets of banks i and j

compared to the total assets of the banking system.

The IndPDConj indicator aims to capture the macruprudential risk effects.

An increase in its value means that the financial system is more exposed to

this kind of risk.

• Evolution of the Expected Loss given the default of two banks (In-

dLGD)

For each pair of banks (i, j), we calculate the joint probability of default P (Bi∩
Bj). Considering LGDi and LGDj as expected loss rates due to banks’ i and j

defaults, and EADi and EADj the amount of assets of the banks i and j that

are exposed at risk, we define the maximum expected loss and LGD statistics,

quantiles for example, in each period of time t:

ELmaxt =Maxi,j(LGDi.EADi + LGDj.EADj)P (Bi ∩Bj). (16)

This indicator allows us to evaluate the evolution of expected losses in the

worst case scenario, when both banks default and the losses are maximum.

We have then an upper bound to expected losses.

This indicator can be specified for joint default of three or more banks. The

literature supports that LGD is higher in periods of financial market stress,

an increase in this indicator would then suggest that the market is indicating

the existence of vulnerabilities in the banking system.

4 Empirical Results

This section presents the details of PDs and LGDs estimations as well the empirical

systemic risk indicators for the Brazilian Banking System.
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4.1 Data and Estimations of PDs and LGDs

The risk-neutral PDs were estimated using a structural approach, as described in

section 2. As there’s no market data (bonds, derivatives and Credit Default Swaps)

for many Brazilian banks, it’s pretty much impossible to apply methodologies that

depend on this type of data in order to obtain asset volatility for the majority of the

banking system. As we want to estimate the proposed indicators for as many banks

as possible, we try to incorporate asset volatility in PD estimations using accounting

data as in Souto et al. (2009). Despite losing the "collective view" that characterizes

Merton’s Model, accounting data still offers relevant information. We used monthly

accounting data from the Brazilian Central Bank’s database from January 2002

to June 2012. The sample includes banks and conglomerates from Independent

Banking Institutions I and II, with a minimum of 20 observations in the studied

period.3 Beyond filtering the data for the number of observations, banks with low

deposits or with a low number of loans were also excluded from the sample4. The

sample does not include treasury or assembler’s banks. By applying these filters we

focus our sample on financial institutions with commercial bank activities. Banks

may also be excluded from the sample due to bankruptcy or M&A, or included due

to the start of its activities. This flexibility eliminates the survivorship bias problem

in the estimation of our indicators. The sample then represents 65 banks, equivalent

to about 68% of the Brazilian Financial System’s assets, considering data from June

2012.

Given that the PDs have unit roots, the in-difference correlations between them

were used to identify clusters. To calculate these correlations we need to consider

a fixed number of banks through time. Thus, clusters were established considering

only banks that were active during the whole period analyzed.

By using accounting data to estimate indicators, the book value of assets and its

volatility were used to estimate the indicators D2D and PD, defined by equations (6)
3Banking Institutions I is composed of one of the following independent financial institutions

(not part of a conglomerate): Commercial Bank, Universal Bank holding a commercial bank

portfolio or a Savings and Loans. Banking Institutions II is made of financial institutions that

are not part of a conglomerate and are either an Universal Bank not holding a commercial bank

portfolio or an Investment Bank.
4Banks with average loans over assets lower than 15% were excluded from the sample.
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and (5), respectively, substituting µA for the risk-free rate r. For the asset volatility

estimation, we used the standard definition in finance literature, i.e., the annualized

standard deviation of the book value of assets considering a moving time frame of

12 months; that is:

σAt =

Î
11X
i=0

(At−i − A)2

11
·
√
12, (17)

where A is the average book value of assets inside the moving time frame. 5 As said

in section 2, the distress barrier is usually calculated as the short-term obligations

plus a proportion of long-term obligations. Given that this information was not

available for the whole period, we calculated the distress barrier as 85% of the

liabilities. This percentage was chosen for being the closest to the barrier that would

be built from the short-term obligations plus 50% of the long-term obligations in

the period with available data.

As with the PDs, the risk-neutral LGDs were estimated considering the rate of CDI

(Certificados de Depósito Interbancário, Interbank Certificates of Deposit) as the

risk-free rate. Administrative costs for asset recovery were set to 15% based on

experts opinion. Given these parameters, average LGD is about 30%.

In order to build the BPBD, we follow the literature considering that ban returns

follow a Student distribution with 5 degrees of freedom. Results using a normal

distribution are quite similar.

4.2 Systemic Risk Indicators for the Brazilian Banking Sys-

tem

The proposed risk measures are used to analyze the Brazilian Banking System sys-

temic risk and. Also, how the banking system was affected by the 2008 crisis (global
5The assets’ volatility was calculated using the semi-variance and downside variance concepts,

however, given the characteristics of some banks with positive returns over long periods of time,

these definitions have shown to be inadequate for the construction of a credit risk indicators time

series. RoA (Return on Assets) and RoE (Return on Equity) volatilities were also tested, but the

results were not reasonable.

16

18



financial crisis). It is widely perceived that the crisis has had important effects

worldwide and capturing such effects is very relevant for policy makers.

Five bank clusters were identified based on the correlation of the in-difference prob-

abilities of default (given that these probabilities present unit roots)6. The cluster

identification suggest that the Brazilian banking system has features of "money cen-

ters", as described by Freixas et al. (2000). Each cluster is composed of: Group 1 -

Eighteen banks, Group 2 - Ten banks, Group 3 - Thirteen banks, Group 4 - Seven

banks, Group 5 - Ten banks (Figure 2, where the ball size stands for the bank

size: large, medium or small). The clusters have distinct features regarding its joint

probability of default and contagion possibility.

The clusters were identified considering the correlation of the in-difference probabil-

ities of default during the whole period analyzed. Thus, we estimate the proposed

indicators considering that the clusters will be the same during the period stud-

ied. However, it is possible some transformation in the clusters if we considered the

correlation for different periods. It will depend on how stable the relationship are

among banks. If the relationship between banks suffer significant transformation

over time, the clusters will change as a consequence.

Regarding the indicators built from the PDs and the multivariate density, we can

observe that they anticipate moments of higher tension in the Brazilian banking

system in 2002, due to the election period, and in 2007/2008 due to the global

financial crisis, and the 2011/2012 euro crises (Figures 2 and 6).

Banks that form group 5 have higher IndPD than banks of other groups. Unlike

other groups, group 5 does not have a large bank among its members. This result

may indicate that smaller banks are more vulnerable to credit market volatilities.

Furthermore, group 5 has higher IndPDCond, indicating that its banks would be

more affected if another bank in the system defaulted (3 e 4).

The IndPDCond and IndPDConj consider not only the individual probability of

default, but they also incorporate dependency structures between banks. Thus,

these measures may present higher non-linear increases than individual PDs. This

can be observed when comparing the results of group 4 and 5. Group 5 banks have
6Clusters defined with the PDs correlation are similar to those identified considering correlation

of the in-difference PDs.
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higher individual PDs (see figure 3). However, in moments of higher market stress,

the IndPDCond and IndPDConj measures of group 4 banks are higher than those

of group 5 (see figures 4 and 5). This reflects that in stressful moments not only

individual PDs increase, but there is also an increase in stress dependency.

When stress is detected in the banking system at 2007 the IndPD for all banks is

35% above of the annual average of IndPD at normal years (before the crisis 2004-

2006). Some clusters, such as clusters 1, 2 and 4, present even higher growth in the

IndPD during 2007. Similar analysis applies to IndPDCond regarding all banks and

clusters 2 and 4. This result suggests an increase in the possibility that one bank

may be affected by the default of another bank within the same cluster.

Regarding the indicators using the Loss Given Default rate, figure 6 suggests that

the use of value losses due to default is more informative than the use of descriptive

statistics such as the quantile and maximum.

The values of the indicator ELmax is an upper bound to the expected losses in

the banking system due to default of a pair of banks. The rate of administrative

costs used to estimate ELmax was based on experts opinion. However, this is a

controversial number. Therefore, the values of ELmax cannot be seen in absolute

terms. On the contrary, its trajectory is more important. Since LGD is higher in

periods of financial stress, higher values of the indicator ELmax means that the

vulnerability of the banking system is increasing.

5 Final Considerations

In this paper we presented measures of systemic risk that may be used to evaluate

eventual vulnerabilities of the banking system due to credit risk. The theory estab-

lishes that the uncertainty regarding the value of an asset is a source of risk to the

banking system, given that it may fall below such a point that it becomes impossi-

ble for the bank to honor its obligations with shareholders. The measures obtained

were built considering this theoretical framework, as well as the stress dependency

structure between banks captured by the multivariate density of the banking system.

Regarding the indicators proposed using Loss Given Default, the results suggest that

the use of value losses due to default is more informative than the use of descriptive
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Figure 2: Cluster Definition

Bank groups are determined using a Minimum Spanning Tree (MST), considering

the in difference PDs correlations as the distance. The size of the circles corresponds to

bank size: large, medium and small.

Figure 3: Probability of default in the banking system (IndPD)
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Figure 4: First round effects of a bank’s bankruptcy (IndPDCond)
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Figure 5: Probability that two banks default simultaneously (IndPDConj)
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Figure 6: Expected Loss indicators and rate of Loss Given Default
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statistics such as the quantile or the maximum.

The empirical results show that the systemic risk measures proposed present char-

acteristics of early warning indicators since they anticipate the moments of stress in

the banking system such as the global crisis of 2008.

The proposed measures are useful tool for stress tests and policy makers. The cluster

analysis can be used for scenarios design or for detailed risk analysis of specific group

of banks that interest to the policy makers. Furthermore, the indicators can be used

to identify banks systemically important due to its connection and to its effects on

PDs of other banks.

Further research will be use for other dependence measures to establish the clus-

ters such as copula dependence measures, and forecast the clusters composition.

Nonetheless, it is an important step in the construction of systemic risk measures

that can help the prevention of future crisis.
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6 Appendix I - Loss Given Default

The recovery rate, assuming no liquidation cost after the default, is given by the

ratio between the bank’s asset value in T over the face value of debt F , given the

occurrence of a default. Formally,

RR = E(
AT
F
| AT < F ) =

1

F
E(VT | VT < F ), (18)

given that the firm’s value V is equal to its asset values A.

Note that when we assume that asset value is a log-normal variable, we have that

lnA is normally distributed with mean µ and variance σ2. Therefore, Z = (lnA−µ)
σ

follows the normal standard distribution and the value of the assets can be described

by: A = exp(σZ + µ). So,

E(A | A < F ) = E(exp[σZ + µ] | exp[σZ + µ] < F )

= E(exp[σZ + µ] | Z < (lnF − µ)/σ) (19)

Defining g = (lnF − µ)/σ e h = N (g) , where N (·) is the cumulative standard

normal distribution function, (19) becomes:

E(A | A < F ) =

Z g

−∞
exp[σz + µ](2π)−1/2 exp[−z2/2]dz

h

=

Z g

−∞
exp[(2σz)/2 + µ+ σ2/2− σ2/2](2π)−1/2 exp[−z2/2]dz

h

= exp[µ+ σ2/2]

Z g

−∞
(2π)−1/2 exp[−(z − σ)2/2]dz

h

= exp[µ+ σ2/2]
N ((lnF − µ)/σ − σ)

N ((lnF − µ)/σ)
. (20)

Considering the parameters of the normal distribution of lnA:

lnAT ∼ N
�
lnA0 +

�
µA −

1

2
σ2
A

�
T, σ2

AT
�
, (21)
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we can write the expected value of AT given that AT < F as:

E(AT | AT < F ) = exp
�
lnA0 +

�
µA − σ2

A/2
�
T + (σ2

AT )/2
�

.
N

�
(lnF − (µA − σ2

A/2)T ) /
�
σ2
A

√
T
�
− σ2

A

√
T
�

N
�
(lnF − (lnA0µA − σ2

A/2)T )σ
2
A

√
T
�

= exp [lnA0 + µAT ]
N

�
− ln

A0
F

+(µA+σ2
A/2)T

σA
√
T

�
N

�
− ln

A0
F

+(µA−σ2
A/2)T

σA
√
T

�
= A0 exp [µAT ]

N (−d∗1)
N (−d∗2)

. (22)

Substituting the term above in equation (18), we get an expression for the expected

recovery rate in time T, in t = 0:

RR =
A0

F
exp [µAT ]

N (−d∗1)
N (−d∗2)

. (23)

Similarly to the case of PDs, there’s a distinction between actual and risk-neutral

recovery rates. To obtain the risk-neutral rate, we substitute µA for the risk-free

rate r and debt face value F for the distress barrier.

RR =
A0

DB
exp [rT ]

N (−d1)
N (−d2)

. (24)

The risk-neutral recovery rate is lower than the actual counterpart. Therefore, actual

LGD is higher than risk-neutral LGD, given that LGD = 1 − RR when recovery

costs are null.

Having analyzed the theoretical aspects in the calculation of LGD, we get the final

formula to estimate the expected loss rate at time T from the asset value at time t =

0, measured in tual terms and including bankruptcy administrative costs, denoted

by ϕ:

LGD0 = 1− (1− ϕ) A0

DB
exp [rT ]

N (−d1)
N (−d2)

, (25)

being d1 e d2 defined as in equations (3) and (4).

We can then estimate in t the expected bank loss for time T, as being:
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ELt = PDt.LGDt.EADt, (26)

where EAD (Exposure at Default) is the amount of the bank’s assets that are

exposed to losses due to its counterpart’s default.

7 Appendix II - Consistent Information Multivari-

ate Density Optimizing methodology

Segoviano and Goodhart (2009) present a set of banking stability measures, built

from an adjusted multivariate density with empirical information, denominated Con-

sistent Information Multivariate Density Optimizing methodology or simply CIMDO

methodology, established in Segoviano (2006). This section aims to detail this

methodology.

The CIMDO methodology can be used by considering the banking system as a

portfolio of N banks. However, as to avoid notation overloading, we will consider

a portfolio composed of two banks: bank X and bank Y , with logarithmic returns

defined as the random variables x and y.

It is assumed, from an initial hypothesis, that the portfolio’s stochastic process mul-

tivariate distribution follows a parametric distribution q(x, y) ∈ R2, called a prior

distribution from now on. The initial hypothesis about the distribution of returns

is taken according to economic hypotheses (default is deflagrated by the decline of

asset value below a given barrier) and theoretical models (structural approach), but

not necessarily in accordance with empirical observation.

The CIMDO methodology allows for the inference of a multivariate distribution

p(x, y) ∈ R2 (a posterior distribution) from the prior distribution. This is done

by means of an optimization process in which the prior density is updated with

empirical information extracted from PDs and DBs by means of the restrictions

set.

Formally, the Banking System Multivariate Density (BSMD) is obtained by the

resolution of the following optimization problem:
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Minp(x,y)C[p, q] =
Z Z

p(x, y) ln[
p(x, y)

q(x, y
]dxdy, (27)

sujeito aZ Z
p(x, y)X(DBx,∞)dxdy = PDx

t (28)Z Z
p(x, y)X(DBy ,∞)dydx = PDy

t (29)Z Z
p(x, y)dxdy = 1 (30)

p(x, y) ≥ 0. (31)

where p(x, y), the multivariate posterior distribution, is to be found. PDx
t and PDy

t

are the empirically estimated probabilities of default of banks x and y, respectively,

at time t. X[DBx,∞),X(DBy ,∞) are indicator functions. The restrictions (28) and

(29), imposed on the marginal densities of the BSMD (p(x, y)), assure that the

information obtained through the empirical estimation of PDs and distress barriers

of each bank of the portfolio are integrated in the BSMD. The restrictions (30)

and (31) assure that the solution of optimization problem ×p(x, y) is a valid density;

that is, they guarantee that the solution satisfies de additivity and non-negativity

conditions.

Therefore, the CIMDO density is generated by minimizing the functional:

L[p, q] =
Z Z

ln p(x, y)dxdy −
Z Z

p(x, y) ln q(x, y)dxdy

+ λ1

�Z Z
p(x, y)X(DBx,∞)dxdy − PDx

t

�
+ λ2

�Z Z
p(x, y)X(DBy ,∞)dydx− PDy

t

�
= µ

�Z Z
p(x, y)dxdy − 1

�
. (32)

Through the calculation of variations, one can obtain the optimal a posterior mul-

tivariate density:

×p(x, y) = q(x, y) exp{−
h
1 + µ̂+

�
λ̂1X(DBx,∞)

�
+
�
λ̂2X(DBy ,∞)

�i
}. (33)

Intuitively, the set of restrictions guarantees that the BSMD, ×p(x, y), contains marginal

densities that satisfy the empirically observed PDs for each bank of the portfolio.
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