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Non-technical Summary 

Large databases (or Big Data) and Machine Learning have increased our ability to 

produce credit scoring models with many observations and explanatory variables. The 

credit scoring literature has focused on the optimization of default classifications, but 

little attention has been paid to inadequate use of these credit scoring models. 

This study fills this gap. It proposes a measure to assess the model risk of credit scoring 

models. Its emphasis is on model misuse. Traditional credit scoring performance 

indicators do not capture model risk, particularly model risk associated with misuse. The 

proposed model risk measure is ordinal, and it applies to many settings and types of loan 

portfolios, allowing comparisons of different specifications and situations (as in-sample 

or out-of-sample data). It has potential use at the managerial and prudential levels, as it 

allows practitioners and regulators to evaluate and compare different credit risk models 

in terms of model risk. 

We empirically test our measure in plugin LASSO (Least Absolute Shrinkage and 

Selection Operator) credit scoring models. We use a sample of loans to micro and small 

firms in the city of São Paulo, Brazil. We find that increasing the sample size by adding 

loans from different banks to increase the number of observations is seldom an optimal 

choice. In other words, the estimation of “segmented models” (estimated using loans from 

a single bank) generally translates into lower model risk than “population models” 

(estimated using loans from the entire financial system) for in-sample applications. 

Because the population of loans is not homogeneous across banks, segmented models 

may provide estimates that are more suited to different segments of the population. The 

insights of our model risk measure allow us to challenge the generally accepted 

assumption that more data (i.e., a larger number of observations) will lead to better quality 

inferences. 

Finally, we compare our model risk measure across models estimated with different 

number of explanatory variables. Specifically, we compare a model with many variables 

at the location level to a leaner model that replaces these variables with location fixed-

effects. Our measures of model risk are very similar across these models, meaning that a 

leaner specification does not necessarily lead to lower model risk and better predictions. 
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Sumário Não Técnico 

Grandes bases de dados (ou Big Data) e Aprendizado de Máquina (Machine Learning) 

aumentaram nossa capacidade de produzir modelos de pontuação de crédito (credit 

scoring) com muitas observações e variáveis explicativas. A literatura sobre pontuação 

de crédito tem se concentrado na otimização da classificação de default, mas pouca 

atenção tem sido dada ao uso inadequado desses modelos. 

Este estudo preenche essa lacuna ao propor uma medida para avaliar o risco de modelos 

de pontuação de crédito. Sua ênfase está no uso inadequado do modelo. Os indicadores 

tradicionais de desempenho não capturam o risco de modelo, particularmente o risco 

associado ao uso inadequado. A medida de risco de modelo proposta é ordinal e se aplica 

a muitos cenários e tipos de carteiras de empréstimos, permitindo comparações entre 

diferentes especificações e situações (como dados dentro e fora da amostra). 

A medida de risco de modelo é testada empiricamente em modelos plugin LASSO (Least 

Absolute Shrinkage and Selection Operator) de pontuação de crédito. Nós usamos uma 

amostra com empréstimos a empresas de micro e pequeno porte na cidade de São Paulo. 

Os resultados evidenciam que um aumento do tamanho da amostra, via a adição de 

empréstimos de diferentes bancos para aumentar o número de observações, raramente é 

a escolha ideal. Em outras palavras, a estimação de “modelos segmentados” (usando 

empréstimos de um único banco) geralmente se traduz em risco de modelo menor do que 

“modelos populacionais” (estimados a partir de empréstimos de todo o sistema 

financeiro). Uma vez que a população de empréstimos não é homogênea entre bancos, 

modelos segmentados podem fornecer estimativas mais adequadas a cada segmento da 

população. Os nossos resultados permitem questionar a suposição geralmente aceita de 

que mais dados (i.e., um maior número de observações) levem a melhores inferências. 

Finalmente, comparamos estimações feitas com diferentes números de variáveis 

explicativas. Especificamente, comparamos um modelo com diversas variáveis ao nível 

da localização a um modelo mais enxuto, que substitui essas variáveis por efeitos fixos 

de localização. Nossas medidas de risco de modelo são muito semelhantes entre esses 

dois modelos, significando que uma especificação mais enxuta não necessariamente 

conduz a menor risco de modelo e melhores previsões. 
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1. Introduction

Since Altman’s (1968) seminal paper, researchers have explored various specifications 

and methods for quantifying credit risk and forecasting default. The emergence of Big 

Data and Machine Learning has expanded the potential for developing novel models and 

techniques. The uncertainty about events predicted by these models and the uncertainty 

of the models themselves are often treated as risks (Ilut and Schneider, 2022). The 

uncertainty about the models themselves is generally referred to as  model risk and may 

be caused by misspecification, misuse, and sample bias. 

Proper quantification of model risk is important for risk and capital management in 

financial intermediaries. However, the literature on model risk has focused mainly on 

market risk (Cont, 2006; Coqueret and Tavin, 2016; Danielsson et al., 2016) and capital 

allocation1 (Kerkhof et al., 2010; Barrieu and Scandolo, 2015; Schneider and Schweizer, 

2015). Despite the importance of separately addressing (and measuring) model risk from 

default risk itself, the finance literature is almost silent on model risk measures for credit 

risk applications. 

Our research addresses this gap by focusing on the model risk of credit scoring2 models. 

We propose a measure to assess the model risk for default estimation models by adapting 

the model risk metric of Barrieu and Scandolo (2015), originally developed for market 

risk, and using the Mahalanobis’ Distance as its reference risk measure. Our emphasis is 

on the inappropriate use of high hit rate models since performance indicators do not 

capture the model risk associated with the fact that large databases and Machine Learning 

techniques can exacerbate the misuse. 

Applications and financial models that combine Big Data and Machine Learning might 

become industry standards (Kolanovic and Krishnamachari, 2017) with the potential to 

revolutionize not only the financial industry and banking supervision but also various 

sectors of the real economy (Wall, 2018; Eccles et al., 2021). Although the large number 

of observations and the multiple dimensions of explanatory variables allow the discovery 

1 When the literature focuses on capital allocation, it mainly does on market risk assets capital allocation. 
2 Or credit behavior models, because our proposed measure may apply to both existing loan portfolios and 

new loan applications. Our empirical applications are made using existing loan portfolios. 
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of patterns and heterogeneities, Big Data also introduces challenges that include 

technological bottlenecks, noise accumulation, spurious correlation, endogeneity, and 

measurement errors (Fan, Han and Liu, 2014; Meng, 2018). Indeed, the adoption of 

Machine Learning tools can constitute new supervisory costs due to the lack of 

transparency and the absence of a standardized methodology for model evaluation 

(Alonso and Carbô, 2020). 

 

The academic literature has presented moral and legal concerns about Big Data and 

Machine Learning in credit scoring models (O’neil, 2016; Hurley, 2016; Onay, 2018), 

but few empirical studies on credit scoring use large datasets (such as Wang et al., 2015; 

Óskarsdóttir et al., 2019; Agarwal et al., 2020; Huang et al., 2020; and Alonso and Carbô, 

2020). Our study contributes to the recent but growing empirical literature on large 

datasets and Machine Learning used in credit scoring models. 

 

Prior studies on credit scoring have compared Machine Learning techniques (e.g., Wang 

et al., 2011; Zhou et al.; 2014; Barboza et. al., 2017; Óskarsdóttir et al., 2019; Agarwal et 

al., 2020; Huang et al., 2020; Alonso and Carbô, 2020) using traditional measures and 

focusing on the optimization of classifications, on the identification of more accurate 

prediction techniques, and on the accuracy of in-sample predictions. However, the 

literature is unable to identify the best credit Machine Learning technique (Wang et al., 

2014; Dastile et al., 2020; Alonso and Carbô, 2020). The prediction performance depends 

on the nature of the problem, the data structure, the sampling, the vector of independent 

variables used, and the classification proposal (Duéñez-Guzmán and Vose, 2013; Huang 

et al., 2020). Although there are concerns from managers and regulators about the 

potential risks associated with algorithms’ discretion for variable selection and model 

building, as well as the lack of causality, insufficient attention has been paid to the 

inappropriate utilization of high-hit rate credit scoring models. 

 

We add to the literature on model risk by presenting a novel model risk measure for credit 

scoring models. We apply it in two empirical applications using the plugin Least Absolute 

Shrinkage and Selector Operator – LASSO, using a large dataset of micro and small 

firms’ loans in the city of São Paulo, Brazil, with more than 100 explanatory variables (in 

location fixed-effects models) and more than 200 variables (or more than 1,700 features 

when explanatory variables are transformed into dummies) in alternative specifications. 

7



We estimate scores and compare the performance of different models through traditional 

metrics such as the Kolmogorov-Smirnov Statistics – KS and the Area Under the Receiver 

Operating Characteristic curve – AUC; or through indices based on likelihood density 

functions, such as the Mahalanobis Distance, among others (Thomas et al., 2017). 

 

We focus our empirical applications in the following question: Does more data lead to 

better inferences? 

 

Our first empirical application involves a comparison of models that utilize data from the 

entire population to those that only use segments or parts of the data. Specifically, we 

examine models’ predictions when the data were segmented by banks3 versus when using 

a larger, entire population database (referred to as “full data”). In other words, we 

compare the bank-specific inferences of models to predict the default rate of a bank using 

bank-specific data versus population data (i.e., data from all banks). Should one use loan 

observations of other banks, if available, to predict the portfolio credit default of a specific 

bank? 

 

This comparison of full data models with segmented data models permeates the 

discussion on the use of very large datasets (or Big Data) for default estimation. Big Data 

and Machine Learning applications can intensify Simpson’s paradox4 effects. Models 

whose data preserve heterogeneous segments can produce different results from models 

in which heterogeneous segments are computed separately. 

 

The insights of our applications undermine the generally accepted assumption that more 

data (i.e., a larger number of observations) will always lead to better quality inferences. 

Our results show quite the contrary: for in-sample estimations, the hypothesis that the 

segmented data models estimated for each bank have a lower model risk than the 

conditional model risk of the full data model is empirically confirmed. 

 
3 Data were segmented by financial conglomerate. For simplicity, financial conglomerates are named 

“banks”. 
4 Simpson’s paradox (Simpson, 1951) is a remarkable phenomenon that may arise when comparing two 

samples based on the occurrence of certain attributes (as default in credit scoring models, for example). 

When the population is analyzed separately by a set of descriptive covariates (such as creditor bank), the 

incidence rate of the dependent variable may differ significantly across each covariate. Therefore, the 

partitioning of the population could be a crucial factor in the development of models. The coefficient of a 

partial regression model can have a different sign from a single (non-partitioned) regression (Samuels, 

1993). 
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While the first application focuses on comparing models with different sample sizes (i.e., 

models with data from the entire population compared to models with smaller, segmented 

sets of observations), the second application examines another characteristic of large 

databases (or Big Data), namely high dimensionality (i.e., the large number of 

explanatory variables). In the second application, we compare a more parsimonious 

model with (borrowers’) geolocation fixed-effects with an alternative model in which 

these fixed-effects are replaced by 94 variables that characterize each geolocation. Given 

that inferences about the default location are unnecessary, location-fixed-effects would 

be a suitable substitute for many explanatory variables connected with those geographic 

locations, as they capture not only the information of all observable explanatory variables 

but also unobservable ones. 

 

We test the hypothesis that models with geolocation-fixed-effects have a lower model 

risk than models that replace fixed-effects with many location-associated variables. We 

conclude that it is preferable to use fixed-effects models because they produce similar 

results and require less processing time and computational power. 

 

The results of our empirical applications have implications for practitioners and 

regulators. As deductive processes and parsimonious regression models are replaced by 

data-driven approaches, banks must measure and monitor model risk even further. When 

model risk is relevant, banks ought to incorporate it into their pricing and capital 

allocation strategies. 

 

The Basel III reforms (BCCS, 2017) have updated the OF (Output Floor), which imposes 

limitations on the regulatory capital advantages that a bank using proprietary models may 

have in contrast to the standardized approaches. The OF provides a safeguard against 

unsustainable levels of capital requirements by mitigating gaming and model risk across 

both internal models and standardized risk measurement approaches. 

 

In addition to these empirical contributions, this article has theoretical ones: i) the 

adaptation to credit scoring models of the relative model risk measure originally 

developed by Barrieu and Scandolo (2015) for market risk; and ii) the identification of 

the relationship between the Mahalanobis’ Distance (Thomas et al., 2017) and the 

coefficient of determination (R2). 
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The remainder of this paper is organized as follows. Section 2 presents the literature on 

model risk measures and large-data Machine Learning credit scoring models and our 

hypotheses. The proposal for the model risk measure in credit scoring models and its 

proof is presented in Section 3. Section 4 presents the data sources and descriptive 

statistics. In Section 5, we detail our empirical applications and define the default 

estimation method. The results are presented in Section 6, and the concluding remarks 

are presented in Section 7. 

 

2. Literature and Hypotheses 

 

2.1. Model Risk 

 

There is no consensus on the definition of model risk (Morini, 2011). However, 

understanding and measuring model risk is crucial for financial institutions and 

regulators. According to the BIS – Bank for International Settlements – model risk is 

“[t]he risk connected with using a model to make financial or risk management decisions. 

Risks may be realized, for example, as losses from incorrect underlying assumptions, 

errors in model implementation, or incorrect model use.” (CPSS, 2016) 

 

Within the finance literature, “model risk” refers to the risk of selecting potentially 

inappropriate parameters, specifications, and data, or the hazard of working with a 

potentially incorrect or ill-suited model. (Kerkhof et al., 2010; Barrieu and Scandolo, 

2015). Various model risk metrics have been proposed, including those by Cont (2006), 

Kerkhof et al. (2010), Barrieu and Scandolo (2015), Bernard and Vanduffel (2015), 

Schneider and Schweizer (2015), Coqueret and Tavin (2016) and Danielsson et al. (2016). 

 

Kerkhof et al. (2010) suggest a procedure to consider model risk in capital reserve.5 Their 

model risk measure is based on a supreme value (worst-case scenario) for a reference risk. 

On the other hand, Barrieu and Scandolo (2015), focusing on market risk, define three 

model risk measures for regulatory purposes6 that consider both the highest (worst-case 

scenario) and lowest reference risk measure value (potential best-case scenario). 

 
5 Alexander and Sarabia (2012) have suggested a correction to regulatory capital based on estimates of 

percentiles adjusted to model risk. 
6 We believe there is no reason to limit the use of model risk measures for regulatory purposes. Instead, 

model risk must be a managerial concern for all financial industry. 
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2.1.1. Model Risk Measures 

 

Kerkhof et al.’s (2010) model risk measure is proposed as tool for market risk capital 

allocation and is based on the worst among those generated by a collection of selected 

models. Their measure is a cardinal measure that compares the worst risk measure with a 

reference. According to Barrieu and Scandolo’s (2015) notation, the model risk, 𝑀𝐾, is: 

𝑀𝐾 = 𝜌̅(ℒ) − 𝜌(𝑋0), (1) 

where 𝜌 is a risk measure associated with a random variable (r.v.); 

ℒ is an r.v. that acts as an alternative distribution (𝜌: ℒ𝜌 → ℝ); 

𝑋0 is an r.v. acting as a reference distribution hypothesis or the model distribution; and 

𝜌̅ is the supremum of 𝜌, or (𝜌(ℒ) = sup
𝑋∈ℒ

𝜌(𝑋)). 

The unit of measure of 𝑀𝐾 is the same as 𝜌(𝑋0) and depends on the risk scale of 𝑋0. 

 

Kerkhof et al. (2010) originally designed the risk measure 𝜌 as a Value-at-Risk (VaR) or 

an Expected Shortfall (ES). Therefore, 𝑋0 would have monetary values as the unit 

measure. They have assumed there is a direct relationship between the risk measure 𝜌 and 

the level of risk. Consequently, the benchmarking 𝜌(ℒ) indicates the maximum potential 

risk for a given model. The model risk 𝑀𝐾 is determined by subtracting the risk measure 

of the model being evaluated, 𝜌(𝑋0), from the maximum potential risk, 𝜌(ℒ). Thus, as 

the risk measure of the model under evaluation increases, the model risk decreases. 

 

Based on Kerkhof et al. (2010), Barrieu and Scandolo (2015) proposed three model risk 

measures: the absolute, the relative, and the local measures of model risk. The absolute 

measure gives a cardinal and quantitative measure, while the relative and local measures 

provide ordinal measures that allow the comparison across models in different contexts, 

considering not only the worst, 𝜌̅(ℒ), but also the best, 𝜌(ℒ), risk measure. 

 

The absolute measure (𝐴𝑀) of risk is a version of 𝑀𝐾 normalized by the measure of risk 

(𝜌(𝑋0)), which allows its use as a comparison tool in different situations. The absolute 

measure (𝐴𝑀) of the model risk is defined as: 

𝐴𝑀 = 𝐴𝑀(𝑋0, ℒ) =
𝜌(ℒ)

𝜌(𝑋0)
− 1. (2) 
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The absolute measure can be used as the basis for defining prudential multipliers. By 

construction, the multiplication of 𝜌(𝑋0) by 𝐴𝑀 + 1 is the maximum achievable risk, 

considering ℒ. 

The relative measure (𝑅𝑀) of the model risk is defined as: 

0 ≤ 𝑅𝑀 = 𝑅𝑀(𝑋0, ℒ) =
𝜌(ℒ) − 𝜌(𝑋0)

𝜌(ℒ) − 𝜌(ℒ)
≤ 1, (3) 

where 𝜌 is the infimum of 𝜌, or (𝜌(ℒ) = inf
𝑋∈ℒ

𝜌(𝑋)). 

The local measure (LM) of the model risk seeks to assess the model risk for infinitesimal 

perturbations. The local measure (𝐿𝑀) of the model risk is defined as: 

𝐿𝑀 = lim
ℇ→0

𝑅𝑀(𝑋0, ℒℇ) = lim
ℇ→0

𝜌(ℒℇ) − 𝜌(𝑋0)

𝜌(ℒℇ) − 𝜌(ℒℇ)
. (4) 

where (ℒℇ)ℇ>0 is a family of sets, each one contained in ℒ𝜌. 

Barrieu and Scandolo’s (2015) model risk measures depend on the relatively arbitrary 

choice of the alternative distribution (ℒ) and of 𝜌(𝑋0), the risk measure associated with

an r.v. 𝑋0. Furthermore, 𝜌(𝑋0) can be subject to specification errors.

The literature includes other model risk measures such as those proposed by Cont (2006), 

Bernard and Vanduffel (2015), Schneider and Schweizer (2015), Coqueret and Tavin 

(2016) and Danielsson et al. (2016). However, these measures are not ordinal and rely on 

the setting of benchmarks and other parameters, resulting in inconsistent outcomes and 

making it challenging or impossible to identify the optimal model (Danielsson, 2002). 

For this reason, we focus on the relative measure of Barrieu and Scandolo (2015), which 

does not depend on any benchmark or additional parameter, but only on the supremum 

and infimum measures. 

2.2. Large Data and Machine Learning on Credit Scoring Models 

The literature has discussed moral and legal concerns regarding Big Data (or large data) 

and Machine Learning in credit scoring models (O’ Neil, 2016; Hurley and Adebayo, 
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2016; Onay, 2018). However, few empirical studies on credit scoring have used large 

datasets. 

 

Wang et al. (2015) have proposed an algorithm that outperforms popular credit scoring 

models such as decision tree, LASSO regression and Random Forests.7 Óskarsdóttir et al. 

(2019) have shown that the combination of traditional credit scoring data with mobile 

phone and social network analytics metadata increases model performance.8 Agarwal et 

al. (2020) have also used mobile and social network data.9 They have argued this type of 

data can replace traditional credit variables and expand access to credit. Huang et al. 

(2020) have argued Big Data and Machine Learning can reduce high information costs 

and promote credit services to Small and Medium-sized Enterprises – SME.10 They 

compared traditional OLS credit scoring regressions with Random Forest models. Alonso 

and Carbô (2020) have also compared Machine Learning (such as logistic regressions, 

LASSO, Classification and Regression Tree – CART, Random Forest, XGBoost, and 

deep neural networks) models for credit default prediction.11 They performed a simulation 

exercise using different sample sizes and features. They showed a larger sample size does 

not significantly increase the model performance over a threshold. On the other hand, the 

performance increases as the number of features increases. 

 

These studies compared machine-learning techniques using traditional measures, such as 

AUC, and focused on the optimization of classifications. However, they are not able to 

identify the best credit Machine Learning technique (Wang et al., 2014; Dastile et al., 

2020; Alonso and Carbô, 2020). Prediction performance depends on the nature of the 

problem, the data structure, the sampling, the vector of independent variables, and the 

classification proposal (Duéñez-Guzmán and Vose, 2013; Huang et al., 2020). Our study 

contributes to the recent empirical literature on credit scoring models that combine large 

datasets and Machine Learning. 

 
7 Wang et al. (2015) have used 150,000 observations, 10 original variables, and 80 derived independent 

variables. 
8 Óskarsdóttir et al. (2019) have used three methodologies (logistic regression, decision tree, and Random 

Forest), 22,000 observations, and more than 300 features. 
9 Agarwal et al. (2020) work’s data have 417,578 loans from mobile-only Indian Fintech and 113 

independent variables. 
10 Huang et al. (2020) work’s data include 1.8 million SME loans granted by MYBank (a Chinese virtual 

bank) and 76 variables. 
11 Alonso and Carbô (2020) data contain up to 60,000 observations and 370 features. They have run a 

simulation exercise for different sample sizes and number of features to measure the Machine Learning 

model advantage. 
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2.3. Hypotheses 

 

The first hypothesis focuses on the dimension of Big Data related to the number of 

observations. We compare the models with different data (population dataset versus a 

subset composed of a single bank’s loans). This is also related to the choice of not adding 

interactions between covariates and bank dummies to the specification. 

 

One popular approach to dealing with segment heterogeneity is to add segment-fixed-

effects (i.e., a series of indicator variables for each cohort of the population). Fixed-effects 

help reduce the room for an omitted variable (and selection) bias. Indeed, different banks 

are arguably to have heterogeneous credit policies that lead to distinct levels of default. 

However, unless the models are saturated, biases can persist (Friedrich, 1982). Complete 

saturation through the inclusion of interactions between fixed-effects and model 

covariates is equivalent to the construction of segmented linear models. Saturated models 

not only require great computational power but may also have many interaction terms 

that are uninteresting to the researcher, difficult to interpret, and imprecisely estimated 

(Hainmuller et al., 2019). It is up to the researcher to omit some or all the interactions 

(Angrist and Pischke, 2008). Furthermore, fixed-effects control only for linear effects, 

whereas segmented models, by construction, allow for non-linearities across different 

cohorts. 

 

Therefore, if inferences are needed about groups of the population, it is unclear whether 

estimating regressions for each cohort is preferable to a regression using population data. 

The full data model may have greater statistical power, but the set of segmented models 

intrinsically considers all interactions and controls linear and non-linear confounding 

effects from different cohorts. 

 

Saturated models are not common in the credit scoring literature, as its primary focus is 

typically on practical credit scores predictions rather than the identification of causal 

relationships (Thomas et al., 2017). We argue that model risk of segmented models might 

be lower than the model risk in full data models because credit scoring models are not 

typically developed as saturated models and fixed-effects control only linear effects 

heterogeneities. Therefore, the first hypothesis is as follows: 

H1: Model risk is lower in segmented data models than in full data models. 
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We build a second hypothesis in the context of geographic location. Some models 

incorporate the borrower's location through fixed-effects based on location variables such 

as the ZIP code12. Others, in the context of Big Data and the available high-dimensional 

data, replace this location fixed-effects with dozens of explanatory variables originating 

from the Census and geospatial databases. In simple OLS regressions, fixed-effects 

should be able to carry all observable and unobservable information in each location. 

However, in LASSO regression, some fixed-effects (or dummies’ locations) are dropped. 

The second hypothesis is as follows: 

H2: A model that includes borrower location dummy variables has lower model risk 

than a model that replaces these dummies with several variables that characterize those 

locations. 

 

3. Measuring Model Risk in Credit Scoring Models 

 

We propose an adaptation of Barrieu and Scandolo’s (2015) model risk measure for credit 

risk, especially for credit scoring models. Our research centers on the misuse of credit 

risk models, especially regarding the use of inferences derived from an estimated model 

with a large database that extends beyond the specific segment (or partition) of interest. 

More specifically, our first application focuses on the use of potentially inappropriate 

data, i.e., they compare inferences (and model risk) obtained from models estimated using 

the entire population of loans in the financial system with more segmented models 

estimated from a specific sub-population, i.e., the bank that holds the loan credit risk. 

 

According to the BIS model risk definition, a credit risk model capable of materializing 

zero losses would have zero model risk. Indeed, it would always perfectly forecast its 

output. In other words, the correlation between the observed inputs and the prediction 

outputs would be equal to one. 

 

On the other hand, when a credit risk model would have always missed its predictions, 

the correlation between real observations and predictions would be minus one. 

Nonetheless, its accuracy would be guaranteed by multiplying the prediction by minus 

one. Whilst the correlation of a random credit risk model would be zero. 

 
12 The use of ZIP code (or some ZIP code aggregation) in credit scoring models is controversial. It may be 

considered a variable of discrimination. 
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The correlation (𝜌𝑌,𝑌̂) between observations (the dependent variable of a credit scoring

model) and its predictions is, therefore, a natural and intuitive parameter for measuring 

Credit Scoring Model Risk (𝐶𝑆𝑀𝑅). 

𝐶𝑆𝑀𝑅 = 1 − |𝜌𝑌,𝑌̂| (5) 

Barrieu and Scandolo’s (2015) Relative Measure provides an ordinal metric that allows 

the comparison across models in different situations and considers not only the worst risk 

measure, 𝜌̅(ℒ), but also the best one, 𝜌(ℒ).13 

Lemma 1. The risk Relative Measure (𝑹𝑴) is defined as: 

0 ≤ 𝑅𝑀 = 𝑅𝑀(𝑋0, ℒ) =
𝜌(ℒ) − 𝜌(𝑋0)

𝜌(ℒ) − 𝜌(ℒ)
≤ 1, (3) 

Following the Relative Measure (Equation 3), a model risk measure for credit risk 

requires a risk measure 𝜌 associated with a random variable. 

The assertiveness of credit-scoring models, whether application or behavior-scoring 

models, can be quantified using quantitative indices. There are two types of quantitative 

indices: indices that are based on cumulative distribution such as the Kolmogorov-

Smirnov Statistics (KS) and the Area Under Receiver Operating Characteristic curve 

(AUC), and those based on likelihood density functions, such as the Mahalanobis' 

Distance (Thomas et al., 2017). In Equation (3), we utilize the Mahalanobis' Distance as 

the reference risk measure 𝜌. 

Lemma 2. The Mahalanobis’ Distance, 𝑫, is defined14 as: 

𝐷 =
𝑀𝑏 − 𝑀𝑔

𝜎𝑌̂

, (6) 

where 𝑀𝑏 (𝑀𝑔) is the default prediction average for bad (good) loans, that is, for those 

defaulted (non-defaulted) within the observation window (or a defined period in the 

13 In our model risk measure, 𝜌̅(ℒ) represents the best-case scenario and 𝜌(ℒ), the worst. 
14 Credit scoring literature usually defines Mahalanobis’ Distance as (𝑀𝑔 − 𝑀𝑏)/𝜎𝑌̂. Thus, it assumes a

negative value. For simplicity, we define it as a positive number. 
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modeling process); and 𝜎𝑌̂ is the weighted standard deviation for predictions. We 

consider the loan as the observation unit.15 Assuming homoscedasticity, 

𝜎𝑌̂ = 𝐸[𝜎𝑏] = 𝐸[𝜎𝑔]. (7) 

where 𝜎𝑏 (𝜎𝑔) is the default predictions' standard deviation for bad (good) loans. 

 

Lemma 3. The Mahalanobis’ Distance, 𝑫, can be rewritten as a function of the correlation 

between the dependent variable and its predictions (𝝆𝒀,𝒀̂), the population standard deviation (𝝈𝒀) 

and the prediction standard deviation (𝝈𝒀̂): 

𝐷 =
𝑀𝑏 − 𝑀𝑔

𝜎𝑌̂

= |𝜌𝑌,𝑌̂| ×
𝜎𝑌̂

𝜎𝑌
×

1

𝜎𝑌̂

= |𝜌𝑌,𝑌̂| ×
1

𝜎𝑌
=

|𝜌𝑌,𝑌̂|

𝜎𝑌
. (8) 

The algebraic manipulation of default predictions average (𝑀𝑏 − 𝑀𝑔), in Lemma 3, uses 

the “R-mechanism” and covariance properties as proposed by Meng (2018). See 

Appendix A for details. 

 

Proposition. The model risk in credit scoring models (Credit Scoring Model Risk – 𝑪𝑺𝑴𝑹) 

is equal to one minus the absolute value of the correlation between the dependent variable (𝒀) 

and its predictions (𝒀̂), 

𝐶𝑆𝑀𝑅 = 1 − |𝜌𝑌,𝑌̂| (5) 

where |𝜌𝑌,𝑌̂| is the absolute value of the correlation between the dependent variable 𝑌, 

and its prediction, 𝑌̂. 

 

PROOF OF PROPOSITION 

 

Using the relative measure, Lemma 1 (or Equation 3), as the base equation and the 

Mahalanobis’ Distance, Lemma 2 (or Equation 6), as the risk measure 𝜌, the Credit 

Scoring Model Risk (𝐶𝑆𝑀𝑅) is: 

𝐶𝑆𝑀𝑅(𝑋0, ℒ) =
𝐷(ℒ) − 𝐷(𝑋0)

𝐷(ℒ) − 𝐷(ℒ)
. 

 
15 We could have considered the loan or the borrower as the observation unit. In this work, we consider the 

loan. Thus, a borrower can have defaulted and non-defaulted loans at the same time. 

(9) 
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Considering a random credit model (or a raffle) as the worst possible model, the average 

for bad loans equals the average for good loans (Mb = Mg), and then defines its 

Mahalanobis’ Distance, D(ℒ): 

𝐷(ℒ) = 0 (10) 

Strictly speaking, the worst possible model would have good loans' average predictions 

equal to one and bad loans' average predictions equal to zero, and it should not be 

considered a credible model. Nonetheless, the accuracy of the prediction would be 

guaranteed by multiplying the prediction by minus one. 

 

On the other hand, the average of the predictions for good loans in a perfect model would 

be equal to zero (𝑀𝑔 = 0) and for bad loans would be equal to one (𝑀𝑏 = 1). In this case, 

the population standard deviation (𝜎𝑌) is the same as the predicted standard deviation 

(𝜎𝑌̂). 

 

Considering a perfect credit risk model, Mahalanobis’ Distance, D(ℒ), is defined as a 

function of σY (population standard deviation): 

𝐷(ℒ) =
1

𝜎𝑌
 (11) 

 
Figure 1: 𝐷(ℒ) as a function of Probability of Default. 

 

Figure 1 illustrates the behavior16 of the Mahalanobis’ Distance of a perfect credit risk 

model, 𝐷(ℒ), as a function of default probability, 𝑝. 

 
16 According to Bhatia-Davis inequality, 𝐷(ℒ) is greater than or equal to two. 
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Using Equations (10) and (11), Equation (9) can be rewritten, and the Credit Scoring 

Model Risk (𝐶𝑆𝑀𝑅) becomes: 

𝐶𝑆𝑀𝑅(𝑋0) =

1
𝜎𝑌

− 𝐷(𝑋0)

1
𝜎𝑌

= 1 − 𝜎𝑌 × 𝐷(𝑋0). (12) 

A perfect (that always obtains its predictions right) credit risk model has 𝐶𝑆𝑀𝑅 equal to 

zero (and 𝐷(ℒ) = 𝐷(𝑋0) = 1/𝜎𝑌) and the worst credit risk model (considered as a 

random model, or a raffle) has 𝐶𝑆𝑀𝑅 equal to one (and 𝐷(𝑋0) = 0). 

 

Using Lemma 3 and Equation (8), Equation (12) can be rewritten, and the Credit Scoring 

Model Risk (𝐶𝑆𝑀𝑅) is: 

𝐶𝑆𝑀𝑅(𝑋0) = 1 − 𝜎𝑌 × 𝐷(𝑋0) = 1 − 𝜎𝑌 ×
|𝜌𝑌,𝑌̂|

𝜎𝑌
= 1 − |𝜌𝑌,𝑌̂|. (13) 

Corollary 1. As in Lemma 1, Equation (3) defines a relative risk measure (between zero and 

one), and CSMR is also a relative measure. 

0 ≤ 𝐶𝑆𝑀𝑅 ≤ 1. (14) 

Corollary 2. When estimated on an OLS regression containing only the data for which 

predictions are required, the Credit Scoring Model Risk (𝑪𝑺𝑴𝑹) can be written as a function of 

the coefficient of determination, 𝐑𝟐: 

𝐶𝑆𝑀𝑅 = 1 − √𝑅2. (15) 

 
Figure 2: Credit Scoring Model Risk (𝐶𝑆𝑅𝑀) as a function of 

𝑅2. Model risk is equal to one when 𝑅2 is equal to zero; and 

equal to zero when 𝑅2 is equal to one. 
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In OLS regressions, the Credit Scoring Model Risk (𝐶𝑆𝑀𝑅), as a function of √R2, 

decreases with decreasing marginal variation. It is equal to one when R2 is equal to zero; 

and equal to zero when R2 is equal to one, as shown in Figure 2. 

 

The known properties of R2 sustain 𝐶𝑆𝑀𝑅 validation. The coefficient of determination, 

R2, is more informative and does not have the interpretability limitations of the mean 

square error, 𝑀𝑆𝐸, and its root, 𝑅𝑀𝑆𝐸 (Chicco et al., 2021). Therefore, it would be a 

better metric to evaluate regression analyses and compare models. However, when we 

need inferences for part of the sample (i.e., a segment or a specific group present in the 

sample), R2 is meaningless or cannot be calculated, but 𝐶𝑆𝑀𝑅 can still be estimated. 

 

When estimated for part of the data, segment, or group, Credit Scoring Model Risk 

(𝑪𝑺𝑴𝑹) can be written in a conditional form: 

𝐶𝑆𝑀𝑅𝑓𝑢𝑙𝑙|𝑏 = 1 − |𝜌𝑌𝑓𝑢𝑙𝑙|𝑏,𝑌̂𝑓𝑢𝑙𝑙|𝑏
|, (16) 

where 𝜌𝑌𝑓𝑢𝑙𝑙|𝑏,𝑌̂𝑓𝑢𝑙𝑙|𝑏
 is the conditional (on segment 𝑏) correlation of the observed and 

predicted variables using the full data model. 

 

Corollary 3. For OLS regressions, the Mahalanobis’ Distance, as defined in Lemma 3, 

Equation (8), can be estimated as a function of the coefficient of determination17, 𝐑𝟐 (or √𝑹𝟐): 

𝐷 =
|𝜌𝑌,𝑌̂|

𝜎𝑌
=

√𝑅2

𝜎𝑌
. (17) 

Even in the presence of overfitting, the Credit Scoring Model Risk (𝐶𝑆𝑀𝑅) is useful when 

it is impossible to estimate a real 𝑅2 (as for a model segment). 

 

The main purpose of the 𝐶𝑆𝑀𝑅 is to detect the impact of inappropriate usage, rather than 

identifying specification errors. It is used to compare a segmented data model to a broader 

sample model (the “full data model”), which comprises not only the data from the targeted 

segment whose inferences are required, but also the data from the entire population. 

 
17 The absolute value of Pearson’s correlation, |𝜌𝑌,𝑌̂|, is equal to the coefficient of determination square 

root (√R2) in fitted OLS regressions. This equality can be observed in the segmented data models. 

However, it is not observable in conditional full data models. 
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4. Data and Descriptive Statistics 

 

4.1. Data Sources 

 

Our main data source, SCR – Central Bank of Brazil (BCB)’s credit bureau, contains 

detailed loan-level data on loans made by banks in Brazil. Other studies used the same 

database, such as Ponticelli and Alencar (2016), Schiozer and Oliveira (2016), Behr et al. 

(2022), Mourad et al. (2020), Fonseca and Van Doornik (2022) and Van Doornik et al. 

(2022). We match these data to other data sources, namely: the database of restructured 

loans; the database from the Brazilian Revenue Service; employment data from RAIS – 

Annual Social Information Report; the GeoSampa platform, a geospatial database; and 

the database from the 2010 Census produced by IBGE – Brazilian Institute of Geography 

and Statistics. 

 

Our focus is on loan portfolios for Micro-enterprise and Small Business (MSB, or 

respectively ME and EPP for their acronyms in Portuguese), as defined by the Brazilian 

Revenue Service. ME is a formally registered enterprise with annual gross sales below 

BRL 360 thousand (approximately USD 90 thousand as of December 2019); and EPP, 

with annual gross sales between BRL 360 thousand and BRL 3.6 million (approximately 

USD 900 thousand). By focusing on these specific categories, we ensure a more 

homogeneous population for credit risk assessment purposes. The lending process for 

small businesses is typically retail-style and mostly automated, relying on quantitative 

models, while lending for larger firms requires more soft and qualitative information. 

Moreover, the location variables tend to be more important for MSBs, because their 

creditworthiness tends to be linked to local economic indicators. 

 

Micro and Small Businesses are also of special interest because they have high 

information costs (Huang et al., 2020) and higher default rates. They are responsible for 

a large part of the formal jobs in Brazil (Bacen, 2020) and are the firms that suffer the 

most in unfavorable moments, such as during the 2008 banking crisis (Schiozer and 

Oliveira, 2016) or the Covid-19 pandemic (Bacen, 2021). 

 

We also limited our analysis to borrowers headquartered in São Paulo, the largest city in 

the Americas and in the Southern Hemisphere, allowing its enrichment based on census 
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data and on GeoSampa geospatial database platform. The heterogeneity of the borrowers 

and geographic regions in the city of São Paulo contributes to make our applications 

generalizable. 

 

4.1.1. SCR – BCB’s Credit Information System – and linked data sources 

 

We analyzed loan-level monthly data for all loans exceeding BRL 1,000 (approximately 

USD 250 as of December 2019) from January 2013 to December 2019. We start in 2013 

because the loan value threshold reported in the SCR was BRL 5,000 in previous years. 

Furthermore, we limited our sample to 2019 to avoid the pandemic period. Our segment 

models consider each bank holding company (in Portuguese, conglomerado financeiro) 

as a segment. This procedure is consistent with the literature using Brazilian data (e.g., 

Oliveira et al., 2015; Schiozer and Oliveira, 2016). 

 

Our sample uses non-defaulting loans (loans not in arrears or in arrears for less than 90 

days). As very high-value loans likely refer to financing of a specific nature (as Project 

Finance) or to input error and very low-value loans are considered non-material, loans 

above BRL 10 million and below BRL 10 were excluded. 

 

The SCR contains variables such as loan amount, lending bank, type of loan; loan and 

borrower risk classification; provision; type of loan’s interest rate; relationship time 

between borrower and bank; due date; contract date; guarantees; the existence of previous 

defaults in the last year at the loan and borrower levels; loan amounts taken by the 

borrower throughout the entire banking system and in the specific bank; among others.18 

 

The dependent variable is an indicator of a loan default (a payment delay above 90 days) 

in at least one of the 12 months following the reference month (formally defined in 

Section 5.). For example, for the reference month of March 2017, the loan default variable 

assumes a value of 1 if the loan was in default in any month between April 2017 and 

March 2018, and 0 otherwise. 

 
18 The SCR database’s complete credit risk variable list is available at Central Bank of Brazil (BCB) 

homepage, https://www.bcb.gov.br/estabilidadefinanceira/scrdoc3040, in files “Leiaute do documento 

3040 (XLS)” (which describes credit risk variables), “Instruções de Preenchimento do Documento 3040 

(PDF)” (which describes concepts, document structure and instructions), and other auxiliary instructions. 

Last access on February 14, 2023. 
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We used 103 predictive variables that originated (or were transformed) from the SCR. 

Categorical variables were used in their original form. Numerical variables, when not 

used in their original form, were transformed into percentages or into categorical variables 

(ranges) to capture non-linear effects. Some variables were created from SCR data, such 

as the occurrence of defaults over the previous 12 months. 

 

We used six variables from the employment database (RAIS): the number of employees; 

the number of hired employees; the number of fired employees; the payroll amount (in 

BRL); the average tenure of employees (in months); and the average number of hours 

worked per employee. We transformed these variables into categorical variables. 

 

We utilized data from Brazilian Revenue Service to obtain the borrowers’ industry 

classification (CNAE – National Classification of Economic Activities code)19, the firm’s 

size, the share capital, and ZIP code, which is used to assign each borrower to a census 

sector and “weighting area”.20 

 

Finally, the restructured loans database from the BCB holds loans classified in high-risk 

ratings; and renegotiated loans with a delay of 30 and 60 days. It records restructuring 

and helps classify loans as forbearance loans (Mourad et al., 2020). 

 

4.1.2. IBGE’s Census Data 

 

The 2010 Census produced variables21 for each census sector. The variables refer to the 

characteristics of households, guardians, residents, and variables with crossed 

characteristics.22 The variable “weighting area” is used as a covariate to identify the 

borrower's geographic location. “Weighting area” is the geographic unit formed by 

 
19 Each CNAE code is transformed into a categorical (dummy) variable. It is truncated to five digits. The 

full eight-digit code is uninformative and a possible source of overfitting, as it is very granular. 
20 We used the CNEFE – National Register of Addresses for Statistical Purposes to join addresses and the 

respective census sectors. When a ZIP code is not found, we use an approximation algorithm and case by 

case search. Each “weighting area” is used as a fixed effect in some specifications. See Section 5.1.1. 
21 Demographic census variables at the geographic level for São Paulo are available on Censo 2010, 

http://www.censo2010.ibge.gov.br. The 2020 Census has not yet been completed. 
22 We use Censo 2010’s Basic File (“Arquivo Básico”) whose variables are: number of private permanent 

households; resident population on private households; mean number of residents per household and its 

variance; monthly average income of responsible household (with or without income) and their variances; 

monthly average income of responsible household (with income) and its variance; and monthly average 

income of people aged 10 years or more (with or without income) and their variances. 
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contiguous census sectors (Censo, 2010), provided by the IBGE (Brazilian Institute for 

Geography and Statistics). Each weighted area was transformed into a dummy variable. 

To assign a weighting area to each borrower, we match its ZIP code to the census sector 

and aggregate them into weighting areas, using the IBGE’s definitions.23 

 

4.1.3. GeoSampa 

 

The GeoSampa platform24 is a digital map of the city of São Paulo. It has maps of urban 

legislation and georeferenced data, with about 12 thousand urban services, public 

transport networks, and urban infrastructure. The data can be used as classifiers in the 

default estimation methods. We used 82 variables (numerical, in the number of devices 

per “weighting area”). They are listed in Appendix B. 

 

4.2. Descriptive Statistics 

 

Our sample has a total of 159.8 million observations25 (i.e., loans over 84 months of data, 

from January 2013 to December 2019). The last year of the data (2019) was used only to 

measure the default for observations from 2018. The first year (2013) is only used to build 

predictive variables (in lag) based on past defaults for loans starting in 2014. 

 

As shown in Figure 3, the peak of the overall loan amount outstanding was in November 

2013, at BRL 17,068 billion, whereas the valley occurred in January 2018, at BRL 10,517 

billion, that is, a reduction of 38% in nominal terms. Recovery after the valley was 

generated by an increase in the average value of the loans (Figure 4), not by the number 

of loans (Figure 5). 

 

As shown in Figure 4, the median loan value was almost stable (around BRL 425) in the 

first months of our data. The lowest median loan value occurred in July 2016 (at BRL 

 
23 Census sectors join into “weighting areas” was supported by “Composição das Áreas de Ponderação.txt”, 

https://www.ibge.gov.br/estatisticas/sociais/populacao/9662-censo-demografico-

2010.html?edicao=9747&t=microdados, last access on October 8, 2021, links “Censo 2010”, 

“Documentação”, files “Documentação”, “Áreas de Ponderação”, file “Documentacao.zip”. 
24 Available at http://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx, last access on May 2, 

2022. 
25 Since we use loan stocks in each month, the same loan can be repeated over the months as a new 

observation (i.e., the same loan is a different observation in each month). Although it is the same loan, its 

explanatories variables are different along the time. 
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359.91) and grew over the following months, reaching its highest point of BRL 609.21 in 

December 2019. 

 

 
Figure 3: Loan amount outstanding (in BRL). 

 

 
Figure 4: Loan value median evolution (median ticket). 

 

 
Figure 5: Number of loans per month. 
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Figure 5 shows the evolution of the number of loans during the sample period (January 

2013 to December 2019). The peak occurred in August 2013 with 2,396,476 loans, and 

the valley occurred in January 2019 with 1,479,146 loans (a reduction of 38%). 

 

Figure 6 shows that the largest proportion of defaulted loans within one year occurred in 

February 2016, when the default rate was 4.3%. This means that 4.3% of existing loans 

in that month were in default for at least one month between March 2016 and February 

2017, a period of economic recession in Brazil. The default valley, the lowest default 

proportion period, was January 2014, with a 1.8% default rate. 

 

 
Figure 6: Default loans as a percentage of the total number of loans. 

 

São Paulo Default Map 

 
Figure 7: São Paulo default map. Default rates as a percentage of the 

number of defaulted loans in each “weighting area” in São Paulo 

(Sep/2018), by GIS software. Default rates tend to increase on the 

outskirts of the city. 
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Geospatial variables can be relevant classifiers for credit risk, especially for Micro and 

Small Enterprises (Fernandes and Artes, 2016). Geolocation influences default rates, as 

illustrated in the city of São Paulo map, Figure 7. In general, we can observe default rates 

tend to increase on the outskirts of the city. 

 

Some variables exhibit relatively stable patterns over time, such as the loan origination 

(over 99% of loans are held on the balance sheet by the same bank that originally granted 

the loan), the type of interest rate (over 98% of loans are fixed-rate loans) and the loan 

maturity (43% of loans mature within 30 days or less, and 88% within one year or less). 

Additionally, more than 25% of loans are assigned an AA risk rating (which requires no 

loan loss provision in Brazil) and more than 50% are assigned an A risk rating (which 

requires a minimum provision of 0.5% of the loan’s value). 

 

Other variables are not stable over time, such as the loan modality. The loans granted by 

the five biggest banks comprise more than 97% of the total. For that reason, we analyze 

each of these five banks separately and add up the loans of all the other banks into a single 

group (which we call “bank 6" hereinafter). Considering all the period, Anticipation of 

Credit Card Receivables constitutes about 46.5% of loans, followed by Trade Credit 

Receivables at 13.5%, and Credit Card purchase at 9.0%. However, loan modality is not 

stable across banks, as well. Table 1 illustrates banks’ portfolios in terms of loan modality 

considering all models databases. 

 

 
Table 1: Loan modality percentages (number of loans in each modality over the number of loans of each 

bank in March and September from 2014 to 2018) across banks and in the Financial System (Entire FS). 

The portfolio composition in terms of loan modality is heterogenous across banks. Banks are not in the 

same order as in the Results section, to avoid bank identification. 

 

The Anticipation of Credit Card Receivables is the main modality in two banks (banks 2 

and 4); Working Capital with a due date longer than one year is the main modality in bank 

1; Credit Card, in bank 3; Overdraft, in bank 5; and Trade Credit Receivables in bank 6. 

Overdraft
Working 
Capital

(> 1 year)

Trade Credit 
Receivables

Anticipation of 
Credit Card 
Receivables

Vehicles Credit Card Acquired 
Receivables Others

1 4.1% 27.6% 16.6% 7.2% 0.4% 7.8% 0.0% 36.3%
2 3.3% 2.7% 13.0% 57.7% 0.9% 8.2% 0.0% 14.2%
3 12.4% 20.4% 8.1% 0.0% 0.3% 29.0% 0.0% 29.9%
4 6.1% 4.7% 15.3% 58.0% 0.4% 5.0% 0.0% 10.4%
5 24.4% 11.2% 3.3% 1.7% 5.8% 22.8% 3.0% 27.7%
6 3.2% 6.8% 22.1% 9.4% 17.8% 2.2% 16.9% 21.5%
Entire FS 5.9% 6.7% 13.5% 46.5% 1.4% 9.0% 0.6% 16.4%
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Banks are heterogeneous in terms of the number of loans in the period. For example, the 

bank with the most loans had 8.7 million loans, whereas bank 6 (a group composed of the 

remainder of the banks) had only 565 thousand loans. Banks are also heterogeneous in 

terms of default rates. In March 2017, default rates within one year ranged from 2.35% 

to 7.81%, while the average of the financial system was 3.23%. Differences in covariates, 

such as in credit portfolios across banks, might justify the development of segmented 

models. 

 

5. Methodology 

 

5.1. Empirical Applications 

 

We tested two empirical applications using the 𝐶𝑆𝑀𝑅 measure. Both applications test 

hypotheses that relate model risk in credit scoring with available data volume. The first 

compares models that differ in “data volume” in terms of the number of observations, 

whereas, in the second application, it is in terms of the number of covariates. 

 

5.1.1. First Application – full data versus segmented data models 

 

To test our first application, we need two specifications. The first specification is used in 

the full data model (i.e., loans from all the banks), using a set of covariates, the borrower’s 

head office location (“weighting area”) fixed-effects, and bank-fixed-effects: 

𝑌𝑙,𝑖,𝑔,𝑏 = 𝛼 + 𝛽𝑋𝑙,𝑖,𝑏 + 𝛾𝑏 + 𝛿𝑔 (18) 

where the subscripts 𝑙 refer to loan; 𝑖, to borrower; 𝑏, to bank; and 𝑔, to location; 

𝛼 is a constant to be estimated; 

𝛽 is a vector of coefficients to be estimated for a vector 𝑋 composed of 114 variables 

originating from the SCR and linked data sources, as presented in Section 4.1.1.; these 

variables vary at the loan, borrower, and time levels; 

𝛾𝑏 is a bank-fixed effect; and 

𝛿𝑔 is fixed-effects of geographical location’s (borrower’s head office location). 

 

Additionally, to the first specification model, we run other six models, one for each one 

of the biggest five banks and an additional one for the rest of the banks. 
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Indeed, the second specification is a variation of the first specification (Equation 18), with 

the segmented database by bank: 

𝑌𝑙,𝑖,𝑔 = 𝛼 + 𝛽𝑋𝑙,𝑖 + 𝛿𝑔 (19) 

Naturally, we remove bank-fixed-effects (𝛾𝑏) since models are segmented by bank. 

However, the vector 𝑋𝑙,𝑖 contains data at both loan and borrower-level. Indeed, the set of 

variables in our models includes borrower-level variables that may be produced by other 

banks (e.g., the overall loan amount outstanding in the financial system). 

 

The full data models would be equivalent to the segmented ones if we had included all 

interactions of 𝛾𝑏, that is, if we had a completely saturated model. Since the second 

specification (Equation 19) is segmented by bank, it implicitly carries the interactions of 

each independent variable within. The full data specification (Equation 18) omits these 

interactions; therefore, it would suffer from omitted variable bias. 

 

The first application compares the use of the full model, which utilizes data from the 

entire financial system, against the use of the segmented model, which only uses data 

from the bank for which predictions are needed. If we need to predict scores for a specific 

bank, should we use only data from this targeted bank, or should we include data from 

loans granted by other banks to enhance predictions? In other words, we ask whether 

large data (in terms of the number of observations) results in greater or lesser model risk. 

 

To compare models, we initially determine the conditional correlation between the real 

default variable and the predictions for each bank’s data. Next, we calculate the 

conditional 𝐶𝑆𝑀𝑅s (𝐶𝑆𝑀𝑅𝑓𝑢𝑙𝑙|𝑏, Equation 16) and compare these conditional 𝐶𝑆𝑀𝑅s to 

the 𝐶𝑆𝑀𝑅s of segmented data models. Are the 𝐶𝑆𝑀𝑅s in segmented models, i.e., those 

with observations from only one bank, lower than the 𝐶𝑆𝑀𝑅s in models with data from 

all banks (full data model) even if these are controlled by bank-fixed-effects? 

 

5.1.2. Second Application – number of explanatory variables 

 

The second application compares the 𝐶𝑆𝑀𝑅 measures in terms of the number of 

covariates in the model. To test this hypothesis, we compare the 𝐶𝑆𝑀𝑅 measure of a 
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model that has a single dummy variable as fixed-effects of the geolocation (Equation 18) 

with an alternative model that uses multiple control variables per geolocation to replace 

these fixed-effects: 

𝑌𝑙,𝑖,𝑏 = 𝛼 + 𝛽𝑋𝑙,𝑖,𝑏 + 𝛾𝑏 + 𝜃𝑍𝑔 (20) 

where 𝜃 represents a vector of estimators of the vector 𝑍, which comprises 12 Censo’s 

(2010) variables discussed in Section 4.1.2., and 82 GeoSampa’s variables presented in 

Section 4.1.3. 

 

In LASSO regressions, some variables are dropped (i.e., that some coefficients are forced 

to be exactly zero). As a result, we cannot assume additional covariates would increase 

𝑅2 value or improve the correlation. Furthermore, it may not be possible to predict the 

specific covariates that will be eliminated from each specification. 

 

5.2. Default Prediction Methods 

 

Traditional credit scoring models are cross-section models and intend to capture point-in-

time predictions. Indeed, credit scoring models do not consider changes in a borrower’s 

credit behavior over time. We estimate cross-section default models for March and 

September from 2014 to 2018. We choose March and September because these months 

have fewer missing values (in some variables) than the first semester or annual financial 

statements’ months (June and December). We consider a loan that is overdue for 90 days 

or over in default. Likewise, we assign 𝑌 = 1 if a loan is in default in at least one of the 

12 months following the reference month (for example, for the September-2016 reference 

month, a loan is assigned 𝑌 = 1  if it is overdue for 90 days or more in any month between 

October-2016 and September 2017); and 𝑌 = 0 otherwise. Independent variables (𝑋) 

were presented in Section 4.1. 

 

Specifications are monthly in cross-section. Each specification requires a long 

computational time26, due to the large volume of data (observations and variables). 

 

We utilized monthly random samples of 200,000 loans as the in-sample datasets. 

 
26 With more than 16 hours process average time, in a 256 GB RAM server. 
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5.3. Plugin LASSO Regressions 

 

LASSO is a traditional supervised27 Machine Learning technique used for selecting and 

fitting covariates. This approach automatically chooses independent variables without 

requiring human intervention. LASSO is a linear method that produces a predicted value, 

i.e., a prediction for the dependent variable of each observation. 

 

In high-dimensional data settings with many potential predictors, the LASSO approach 

functions by penalizing the size of the regression coefficients, forcing some of them to be 

exactly zero and effectively removing the corresponding variables from the model. 

LASSO imposes a sparsity constraint on the prediction model by assuming it should not 

be overly complex. Specifically, it measures complexity by the sum of coefficients’ 

absolute values and assumes the unknown true model contains a limited number of 

variables relative to the number of observations. Rather than selecting covariates in a 

causal model, LASSO selects variables that are correlated with the true covariates and 

can generate powerful predictions (also in out-of-sample data), reducing the risk of 

overfitting. LASSO avoids (or reduces) the overfitting problem by minimizing the out-

of-sample prediction error, excluding covariates that have coefficients near zero after the 

application of a penalty term. 

 

The plugin LASSO uses statistical functional forms to estimate plugins for the variance 

of the error term and penalty parameters, replacing the unknown variance with an 

estimated value, and allowing the estimation of coefficients. It achieves an optimal 

sparsity rate and requires less computational power compared to other LASSO methods.28 

 

6. Results 

 

6.1. First Application – Full data versus segmented data models 

 

Equations 18 and 19 were used to estimate the credit score of full and segmented models. 

The findings, depicted in Figure 8 and presented in Table 2, support our first hypothesis. 

 
27 A supervised Machine Learning method is based on labeled input data by which it learns to predict output 

variables. It allows the inspection of the selected variables and the response parameters. 
28 Models estimated by the plugin method in Stata. Manual available at 

https://www.stata.com/manuals/lasso.pdf. 
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CSRM by bank 

 
Figure 8: Credit Scoring Model Risk (𝐶𝑆𝑅𝑀) by bank over time. In each graph, the red line represents the 

conditional 𝐶𝑆𝑅𝑀s of full data models, while the blue line represents the 𝐶𝑆𝑅𝑀s of segmented data models. 

The 𝐶𝑆𝑅𝑀s of segmented data models (by bank) exhibit lower model risk than full data models, except for 

bank F’s 𝐶𝑆𝑅𝑀 in March and September 2017. 

 

Figure 8 compares the conditional full data in-sample estimations (𝐶𝑆𝑀𝑅𝑓𝑢𝑙𝑙|𝑏) with 

estimations of segmented specification (𝐶𝑆𝑀𝑅𝑏) for each bank. In a visual inspection, 

the lines are almost parallel, suggesting the correlation between the dependent variable 

and its prediction behaves similarly over time in both types of models. 

 

Except for bank F in March and September 2017, the segmented models show 𝐶𝑆𝑀𝑅s 

lower than those of the full data models conditioned for each bank (𝐶𝑆𝑀𝑅𝑓𝑢𝑙𝑙|𝑏 ). 

 

To provide more robustness to our results, we calculated the following auxiliary risk 

measures: the Mahalanobis’ Distance; KS, and AUC. These measures are computed for 

the entire full data model, but also conditionally for each bank 𝑏 (the five largest banks 

in number of loans plus a group formed by remaining banks). Auxiliary risk measures are 

often higher in segmented models, reinforcing the observed higher correlation and lower 

𝐶𝑆𝑀𝑅. Exceptions in auxiliary risk measures (Table 2, Panels A and B) happen in bank 

A’s AUC between September 2015 and September 2017; bank C’s AUC in March 2017 

and March 2018; and bank F’s AUC in March 2014, and between March 2016 and 

September 2017. 

 

We can explain AUC’s exceptions. The calculation of AUC is contingent upon the 

number of ranges utilized. In Table 2, Panels A and B, we calculate AUC with 13 ranges. 
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When we calculate AUC with a greater number of ranges29 (as 26 ranges, for example), 

then these exceptions disappear. Indeed, the dependence on the number of ranges 

constitutes a limitation of AUC and a strength to 𝐶𝑆𝑀𝑅, which does not depend on ranges 

since it is related to correlation. 

 

 

Table 2, Panel A: Plugin LASSO Credit Scoring Model Risk (𝐶𝑆𝑅𝑀) and auxiliary risk measures for each 

bank, from March 2014 to March 2016. Full refers to the full data model and Segmen., to segmented data 

models. R2 is the model’s coefficient of determination; R2 adjusted is the adjusted coefficient of 

determination; Mahalanobis’ D is the Distance of Mahalanobis, as presented in Section 3.; KS is the 

Kolmogorov-Smirnov statistic; and AUC is Area Under the Receiver Operating Characteristic curve. 

 
29 AUC with a greater number of ranges were calculated but not reported. 

Full Segmen. Full Segmen. Full Segmen. Full Segmen. Full Segmen.

R2 0.3461   0.3555   0.4401   0.4139   0.4194   

R2 adjusted 0.3455   0.3547   0.4394   0.4134   0.4188   

Mahalanobis' D 3.5139 3.8965   3.5688 3.6511   3.8055 3.8214   3.9248 3.9354   3.9125 3.9335   

KS 0.7637 0.7844   0.7737 0.7800   0.8098 0.8207   0.7945 0.8045   0.8074 0.8145   

AUC 0.9027 0.9100   0.9036 0.9080   0.9265 0.9326   0.9171 0.9125   0.9265 0.9208   

Correlation(Y, Ŷ ) 0.5306 0.5883   0.5828 0.5962   0.6606 0.6634   0.6416 0.6434   0.6441 0.6476   

Model Risk 0.4694 0.4117   0.4172 0.4038   0.3394 0.3366   0.3584 0.3566   0.3559 0.3524   

R2 0.4329   0.4009   0.3446   0.3800   0.3623   

R2 adjusted 0.4321   0.4000   0.3437   0.3792   0.3616   

Mahalanobis' D 4.8180 4.9927   4.6996 4.9403   4.1243 4.2329   3.8868 3.9401   3.8392 3.8913   

KS 0.8317 0.8797   0.8156 0.8745   0.8209 0.8491   0.8403 0.8520   0.8241 0.8274   

AUC 0.9103 0.9219   0.9068 0.9130   0.8970 0.9165   0.9262 0.9449   0.9088 0.9287   

Correlation(Y, Ŷ ) 0.6349 0.6580   0.6023 0.6331   0.5720 0.5871   0.6081 0.6165   0.5938 0.6019   

Model Risk 0.3651 0.3420   0.3977 0.3669   0.4280 0.4129   0.3919 0.3835   0.4062 0.3981   

R2 0.3240   0.3123   0.3278   0.3076   0.3876   

R2 adjusted 0.3217   0.3095   0.3259   0.3054   0.3855   

Mahalanobis' D 1.9552 2.0770   1.8226 2.0048   1.8307 1.8970   1.8026 1.8592   1.8585 1.9247   

KS 0.5484 0.6169   0.5379 0.6786   0.5747 0.6691   0.5481 0.5943   0.5883 0.6417   

AUC 0.8280 0.8664   0.8239 0.8912   0.8525 0.8880   0.8366 0.8648   0.8719 0.8891   

Correlation(Y, Ŷ ) 0.5358 0.5692   0.5080 0.5588   0.5526 0.5725   0.5378 0.5546   0.6011 0.6226   

Model Risk 0.4642 0.4308   0.4920 0.4412   0.4474 0.4275   0.4622 0.4454   0.3989 0.3774   

R2 0.4321   0.3265   0.3574   0.3487   0.3818   

R2 adjusted 0.4305   0.3248   0.3555   0.3466   0.3795   

Mahalanobis' D 2.5313 2.8230   1.7642 1.9134   1.8283 1.9641   1.9857 2.0271   2.0076 2.0754   

KS 0.7541 0.8129   0.5982 0.6629   0.6074 0.6643   0.6172 0.6669   0.6186 0.7033   

AUC 0.9184 0.9517   0.8511 0.8945   0.8628 0.8979   0.8687 0.8988   0.8723 0.9141   

Correlation(Y, Ŷ ) 0.5894 0.6573   0.5269 0.5714   0.5565 0.5978   0.5785 0.5905   0.5978 0.6179   

Model Risk 0.4106 0.3427   0.4731 0.4286   0.4435 0.4022   0.4215 0.4095   0.4022 0.3821   

R2 0.4007   0.3717   0.4211   0.4237   0.4443   

R2 adjusted 0.3978   0.3660   0.4197   0.4217   0.4426   

Mahalanobis' D 1.9514 2.2155   1.9287 2.1480   2.2038 2.4001   2.2399 2.4263   2.2350 2.4388   

KS 0.7216 0.7499   0.7098 0.7621   0.7533 0.7997   0.7378 0.7900   0.7492 0.8093   

AUC 0.9156 0.9333   0.9076 0.9286   0.9337 0.9491   0.9290 0.9439   0.9352 0.9521   

Correlation(Y, Ŷ ) 0.5575 0.6330   0.5474 0.6097   0.5958 0.6489   0.6009 0.6509   0.6108 0.6665   

Model Risk 0.4425 0.3670   0.4526 0.3903   0.4042 0.3511   0.3991 0.3491   0.3892 0.3335   

R2 0.4390   0.3809   0.3567   0.3622   0.4361   

R2 adjusted 0.4341   0.3727   0.3491   0.3559   0.4303   

Mahalanobis' D 3.1676 3.3839   3.1967 3.2842   2.7537 2.9018   2.8361 2.9256   2.9994 3.1443   

KS 0.7070 0.7805   0.6863 0.7408   0.6634 0.7034   0.6500 0.6872   0.6863 0.7046   

AUC 0.8818 0.8816   0.8638 0.8801   0.8520 0.8666   0.8561 0.8841   0.8938 0.8879   

Correlation(Y, Ŷ ) 0.6201 0.6626   0.6007 0.6172   0.5667 0.5972   0.5834 0.6018   0.6299 0.6604   

Model Risk 0.3799 0.3374   0.3993 0.3828   0.4333 0.4028   0.4166 0.3982   0.3701 0.3396   
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Table 2, Panel B: Plugin LASSO Credit Scoring Model Risk (𝐶𝑆𝑅𝑀) and auxiliary risk measures for each 

bank, from September 2016 to September 2018. Full refers to the full data model and Segmen., to segmented 

data models. R2 is the model’s coefficient of determination; R2 adjusted is the adjusted coefficient of 

determination; Mahalanobis’ D is the Distance of Mahalanobis, as presented in Section 3.; KS is the 

Kolmogorov-Smirnov statistic; and AUC is Area Under the Receiver Operating Characteristic curve. 

Except for bank F in March and September 2017, the estimated 𝐶𝑆𝑀𝑅s in segmented models are lower 

than those in full data models. Exceptions in auxiliary risk measures (Panels A and B) happen in bank A’s 

AUC between September 2015 and September 2017; bank C’s AUC in March 2017 and March 2018; and 

bank F’s AUC in March 2014, and between March 2016 and September 2017. 

 

There are also inverted results interpretations in KS comparison to 𝐶𝑆𝑀𝑅. They occur in 

bank B’s KS in September 2016; bank C’s KS in March 2017; and bank F’s KS in 

September 2016 and September 2017. In March 2017, bank F’s auxiliary measures 

comparisons are congruent to 𝐶𝑆𝑀𝑅 measures comparison, although 𝐶𝑆𝑀𝑅 in the 

Full Segmen. Full Segmen. Full Segmen. Full Segmen. Full Segmen.

R2 0.4379   0.4666   0.4374   0.4186   0.4877   

R2 adjusted 0.4374   0.4661   0.4369   0.4181   0.4873   

Mahalanobis' D 4.1230 4.1612   4.5100 4.5569   4.6086 4.6377   4.2699   4.3693   4.7048   4.7717   

KS 0.8344 0.8385   0.8508 0.8637   0.8415 0.8421   0.8286   0.8289   0.8449   0.8476   

AUC 0.9385 0.9338   0.9438 0.9302   0.9375 0.9373   0.9317   0.9338   0.9287   0.9362   

Correlation(Y, Ŷ ) 0.6556 0.6617   0.6760 0.6831   0.6572 0.6613   0.6323   0.6470   0.6886   0.6984   

Model Risk 0.3444 0.3383   0.3240 0.3169   0.3428 0.3387   0.3677   0.3530   0.3114   0.3016   

R2 0.3765   0.3929   0.3816   0.3524   0.3470   

R2 adjusted 0.3757   0.3921   0.3808   0.3515   0.3460   

Mahalanobis' D 3.8892 3.9466   3.8118 3.8559   3.5501 3.6544   3.1851   3.3108   3.1852   3.2368   

KS 0.8503 0.8465   0.8033 0.8322   0.8073 0.8208   0.7884   0.8142   0.7705   0.7860   

AUC 0.9070 0.9280   0.9084 0.9337   0.9008 0.9259   0.9191   0.9404   0.8906   0.9310   

Correlation(Y, Ŷ ) 0.6047 0.6136   0.6197 0.6269   0.6002 0.6178   0.5711   0.5937   0.5797   0.5891   

Model Risk 0.3953 0.3864   0.3803 0.3731   0.3998 0.3822   0.4289   0.4063   0.4203   0.4109   

R2 0.4047   0.4511   0.3312   0.3092   0.3466   

R2 adjusted 0.4024   0.4486   0.3285   0.3058   0.3426   

Mahalanobis' D 1.9219 2.0042   2.5926 2.6441   2.6861 2.7582   2.4139   2.5497   2.8921   3.0124   

KS 0.6086 0.6521   0.7075 0.7023   0.6692 0.6820   0.6123   0.6617   0.6640   0.6823   

AUC 0.8686 0.8897   0.9014 0.8949   0.8759 0.8695   0.8609   0.8367   0.8461   0.8857   

Correlation(Y, Ŷ ) 0.6100 0.6361   0.6585 0.6716   0.5604 0.5755   0.5264   0.5561   0.5652   0.5887   

Model Risk 0.3900 0.3639   0.3415 0.3284   0.4396 0.4245   0.4736   0.4439   0.4348   0.4113   

R2 0.3598   0.3914   0.3847   0.3707   0.3405   

R2 adjusted 0.3574   0.3894   0.3822   0.3673   0.3365   

Mahalanobis' D 2.0059 2.0881   2.2824 2.3136   2.3372 2.4274   2.0399   2.1386   1.9917   2.0973   

KS 0.6423 0.7000   0.6797 0.6961   0.6729 0.7128   0.6071   0.6638   0.5980   0.6433   

AUC 0.8681 0.9075   0.8841 0.9082   0.8818 0.9131   0.8694   0.8955   0.8436   0.8808   

Correlation(Y, Ŷ ) 0.5763 0.5999   0.6172 0.6256   0.5972 0.6202   0.5807   0.6088   0.5541   0.5835   

Model Risk 0.4237 0.4001   0.3828 0.3744   0.4028 0.3798   0.4193   0.3912   0.4459   0.4165   

R2 0.4540   0.4653   0.4424   0.4929   0.4523   

R2 adjusted 0.4515   0.4630   0.4392   0.4915   0.4508   

Mahalanobis' D 2.2922 2.5158   2.6406 2.8351   2.7061 2.9961   2.8131   3.0915   2.7528   2.9980   

KS 0.7690 0.8316   0.7931 0.8271   0.7834 0.8494   0.8165   0.8567   0.7746   0.8183   

AUC 0.9346 0.9556   0.9438 0.9573   0.9403 0.9603   0.9544   0.9678   0.9399   0.9543   

Correlation(Y, Ŷ ) 0.6139 0.6738   0.6353 0.6821   0.6008 0.6652   0.6389   0.7021   0.6175   0.6726   

Model Risk 0.3861 0.3262   0.3647 0.3179   0.3992 0.3348   0.3611   0.2979   0.3825   0.3274   

R2 0.3621   0.3361   0.2498   0.3126   0.3293   

R2 adjusted 0.3551   0.3289   0.2328   0.3013   0.3236   

Mahalanobis' D 3.0829 3.2817   3.4222 3.3859   2.8305 2.8227   2.6485   2.8484   3.1686   3.2157   

KS 0.7378 0.7142   0.7184 0.7050   0.6967 0.7000   0.6580   0.6844   0.6587   0.7007   

AUC 0.9166 0.8768   0.9034 0.8771   0.9054 0.8584   0.8597   0.8702   0.8555   0.8783   

Correlation(Y, Ŷ ) 0.5650 0.6018   0.5858 0.5797   0.5010 0.4998   0.5198   0.5591   0.5654   0.5738   

Model Risk 0.4350 0.3982   0.4142 0.4203   0.4990 0.5002   0.4802   0.4409   0.4346   0.4262   
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segmented model is higher than in the full data model. The KS test also has limitations 

that can explain those inverted results interpretations. It is more sensitive near the center 

of the distribution than in the tails. With a dichotomous dependent variable such as credit 

default, it tends to be important30. The KS test also needs a fully specified distribution, 

which is not the case with credit scoring models, since portfolio data used in a behavior 

scoring model suffers from selection bias (the sample has only credit loan proposals that 

have been accepted). Furthermore, when the KS comparison results are incongruent with 

𝐶𝑆𝑀𝑅, they are also incongruent with other estimated model performance measures 

(Malahanobis’ Distance and AUC with a great number of ranges). 

 

The Mahalanobis’ Distance comparisons are congruent to those in correlation (as 

presented in Corollary 3) and, consequently also congruent to comparison of 𝐶𝑆𝑀𝑅. 

However, unlike from 𝐶𝑆𝑀𝑅, the Mahalanobis’ Distance measure does not allow 

comparisons across banks, as it is not a relative measure31. 

 

Figure 9 depicted the 99% confidence interval for each in-sample difference between the 

correlation in the full data and segmented data models. We conducted a Zou's (2007) 

correlation coefficient test32 and found the correlations in both models of bank F are 

statistically equal within a 99% confidence interval in March and September 2017 (as 

well as in September 2018). This suggests the numerical exceptions are not statistically 

different, further supporting our first hypothesis.33 

 

The Credit Scoring Model Risk, 𝐶𝑆𝑀𝑅, allows practitioners and regulators to evaluate 

and compare different credit risk models in terms of model risk. It is intuitive and easy to 

estimate. The insights of 𝐶𝑆𝑀𝑅 allow us to challenge the generally accepted assumption 

that more data (i.e., a larger number of observations) will always lead to better quality 

inferences. For in-sample measures of model risk, bank-specific data models tend to 

present a lower model risk than financial system-wide data models. 

 
30 Particularly in non-balanced models. 
31 Indeed, 𝐶𝑆𝑀𝑅 is just a transformation of the Mahalanobis’ Distance into a relative measure (Equation 

9). 
32 The Zou’s (2007) correlation test assumes random samples. It is incapable of detecting overfitting effects 

and does not consider variations in correlation over time, or out-of-time samples. 
33 We have also used OLS Stepwise backward regressions, the results (not reported) support our hypothesis 

even further than LASSO regressions (with no exceptions). We have used the full dataset in Stepwise 

regressions. 
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Difference between correlations by bank 

 

Figure 9: Difference between full model conditional correlation and segmented model correlation by 

banks. Each line represents the 99% confidence interval. Points represent the observed difference between 

correlations. Only three confidence intervals cross the vertical axis (no difference between correlations), 

in the difference of correlations of bank F in March and September 2017 and September 2018. 

 

6.2. Second Application – number of explanatory variables 

 

The results presented in Table 3 (and in Figure 10) provide evidence in favor of our 

hypothesis in the second application. However, the evidence is not so strong as the 

evidence in the first application, in which the only two exceptions (in 48 comparisons) 
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are not statistically significant (according to Zou’s (2007) correlation test). In seven of 

the 10 months used in estimations, the 𝐶𝑆𝑀𝑅 measures are lower in the specification that 

contains the “weighting area” as fixed-effects (FE), Equation 18, in comparison to the 

specification that replaces these fixed-effects with a vector of 94 alternative variables (94 

var.), Equation 20. The exceptions occur in September 2014, September 2015, and March 

2016, and undermine (for LASSO regressions) the widely accepted assumption that fixed-

effects models can better capture observable and unobservable information. Although the 

number of exceptions is considerable (three in 10), the 𝐶𝑆𝑀𝑅 measures are almost the 

same in both specifications. 

 

 

 

Table 3: Plugin LASSO Credit Scoring Model Risk (𝐶𝑆𝑅𝑀) and auxiliary risk measures. Model FE refers 

to Equation 18, that is, a model specification with “weighting area” as a fixed effect, and Model 94 var. 

refers to Equation 20, that is, a model specification that substitutes a vector of 94 census and geospatial 

variables for each fixed effect “weighting area”. R2 is the model’s coefficient of determination; R2 adjusted 

is the adjusted coefficient of determination; Mahalanobis’ D is the Distance of Mahalanobis, as presented 

in Section 3.; KS is the Kolmogorov-Smirnov statistic; AUC is Area Under the Receiver Operating 

Characteristic curve; AIC is Akaike Information Criterion; and BIC is Bayesian Information Criterion. 

 

Both models (location fixed-effects model and 94 alternative variables model) exhibit 

minor discrepancies in their auxiliary risk measures, with differences appearing in the 

second decimal place. The comparisons based on KS tests are often (March 2015 and 

March 2016 until March 2018) inconsistent with other risk measures comparisons, 

indicating again the limitations of KS tests. There is only one exception in the AUC 

comparisons regarding correlation and 𝐶𝑆𝑀𝑅 comparisons. It occurs in September 2015, 

FE 94 var. FE 94 var. FE 94 var. FE 94 var. FE 94 var.

R2 0.3276   0.3273   0.3244   0.3249   0.3688   0.3684   0.3688   0.3694   0.3893   0.3896   

R2 adjusted 0.3272   0.3269   0.3239   0.3244   0.3684   0.3680   0.3684   0.3690   0.3889   0.3892   

Mahalanobis' D 3.2356   3.2341   3.0494   3.0519   3.0683   3.0665   3.1207   3.1233   3.1596   3.1608   

KS 0.7609   0.7601   0.7480   0.7486   0.7717   0.7726   0.7649   0.7655   0.7745   0.7743   

AUC 0.9094   0.9086   0.9048   0.9050   0.9156   0.9149   0.9136   0.9135   0.9221   0.9222   

Correlation(Y,Ŷ ) 0.5724   0.5721   0.5695   0.5700   0.6073   0.6069   0.6073   0.6078   0.6239   0.6242   

AIC 204,422- 204,334- 181,723- 181,872- 172,141- 172,006- 178,948- 179,140- 179,697- 179,789- 

BIC 203,106- 203,028- 180,274- 180,372- 170,784- 170,649- 177,754- 177,905- 178,554- 178,625- 

Model Risk 0.4276   0.4279   0.4305   0.4300   0.3927   0.3931   0.3927   0.3922   0.3761   0.3758   

Mar-14 Sep-14 Mar-15 Sep-15 Mar-16

FE 94 var. FE 94 var. FE 94 var. FE 94 var. FE 94 var.

R2 0.3914   0.3895   0.4191   0.4189   0.3807   0.3806   0.3639   0.3590   0.3932   0.3926   

R2 adjusted 0.3910   0.3891   0.4188   0.4185   0.3803   0.3802   0.3635   0.3586   0.3928   0.3923   

Mahalanobis' D 3.2862   3.2783   3.6529   3.6519   3.6464   3.6458   3.4177   3.3949   3.6258   3.6233   

KS 0.7972   0.7991   0.8032   0.8039   0.7996   0.7999   0.7813   0.7815   0.7954   0.7927   

AUC 0.9246   0.9210   0.9285   0.9263   0.9218   0.9211   0.9247   0.9241   0.9144   0.9123   

Correlation(Y,Ŷ ) 0.6256   0.6241   0.6474   0.6472   0.6170   0.6169   0.6032   0.5992   0.6270   0.6266   

AIC 194,995- 194,370- 232,984- 232,896- 238,687- 238,647- 216,438- 214,919- 234,013- 233,830- 

BIC 193,699- 193,043- 231,851- 231,733- 237,544- 237,494- 215,172- 213,643- 232,758- 232,544- 

Model Risk 0.3744   0.3759   0.3526   0.3528   0.3830   0.3831   0.3968   0.4008   0.3730   0.3734   

Mar-18 Sep-18Mar-17 Sep-17Sep-16
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due to the number of ranges used in the AUC calculation. The Mahalanobis’ Distance 

comparisons are always congruent to comparisons based on 𝐶𝑆𝑀𝑅s or correlation. In 

addition,34 we calculated the Akaike Information Criterion – AIC and the Bayesian 

Information Criterion – BIC, which consistently further support the correlation and 

𝐶𝑆𝑀𝑅 comparisons, providing robustness for our measure. 

 

Both models exhibit high discriminatory power, with AUC ranging from 0.9048 (FE 

Model in September 2014) to 0.9285 (FE Model in March 2017) and KS test ranging 

from 0.7480 (FE Model in September 2014) to 0.8039 (94 var. Model in March 2017). 

For comparable models (i.e., estimations for the same bank in the same month), 𝑅2 and 

the Adjusted 𝑅2 describe similar results (largest difference of 0.0049). 

 

 

Figure 10: Credit Scoring Model Risk (𝐶𝑆𝑅𝑀). Fixed-effects (FE) refer to 𝐶𝑆𝑅𝑀 in full data model with 

fixed-effects by borrower headquarters geographic location and 94 var. refer to 𝐶𝑆𝑅𝑀 in an alternative 

full-data model with 94 variables instead of fixed-effects dummies. In seven of the 10 months, the 𝐶𝑆𝑀𝑅 

measures are lower in Fixed-effects (FE) than 94 var. The exceptions occur in September 2014, September 

2015, and March 2016. 

 

Figure 11 depicted the 99% confidence interval for each in-sample difference between 

the correlation in the full data model with fixed-effects by borrower headquarters 

geographic location and the full data model with 94 geolocation variables. We conducted 

a Zou's (2007) correlation coefficient test and found the correlations in March 2014 and 

September 2017 are statistically equal within a 99% confidence interval. 

 
34 It is not possible to calculate AIC and BIC in the first application since we compare the conditional 

correlations in the full data model to the full correlation in the segmented data models. 
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Figure 11: Difference between FE and 94 variables correlations. Correl_FE – Correl_94var 

refers to difference of correlations between observable default variable and their predictions 

in the model with fixed-effects by borrower headquarters geographic location and in the 

alternative model with 94 variables. Each line represents the 99% confidence interval. 

Points represent the observed difference between correlations. Only two confidence intervals 

cross the vertical axis (no difference between correlations), in the difference of correlations 

in March 2014 and September 2017. 

 

7. Concluding Remarks 

 

The finance literature has given little attention to model risk associated with inadequate 

use of high hit rate credit scoring models. However, the emergence of analytical methods 

that combine large databases and Machine Learning requires banks and regulators to 

measure and monitor model risk even further. Traditional credit scoring performance 

indicators (such as KS and AUC, or AIC and BIC) do not capture model risk, particularly 

model risk associated with misuse. 

 

The first contribution of this paper is a measure of model risk in credit scoring. We called 

it “Credit Scoring Model Risk” (𝐶𝑆𝑀𝑅). It is defined as one minus the absolute value of 

the correlation between observed and predict default, 𝐶𝑀𝑅 = 1 − |𝜌𝑌,𝑌̂|. We prove this 

simple and intuitive measure for model risk of credit scoring models is just an adaptation 
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from the relative model risk measure, proposed by Barrieu and Scandolo (2015), using 

the Mahalanobis’ Distance as a reference risk measure. 

 

We also show the Mahalanobis’ Distance (as used in credit scoring models) can be 

rewritten as a function of the correlation (or √𝑅2) between the dependent variable and its 

predictions and the population standard deviation (𝜎𝑌). 

 

The proposed model risk measure is ordinal, and it applies to many settings and types of 

loan portfolios, allowing comparisons of different specifications and situations (as in-

sample or out-of-sample data). It has potential use at the managerial and prudential levels, 

as it allows practitioners and regulators to evaluate and compare different credit risk 

models in terms of model risk. With proper calibration, our approach could evolve 

towards the proposition of a model risk measure that can be used for capital allocation 

purposes. And it can serve as an auxiliary tool in the pricing of loans, as well. 

 

Our empirical findings support the conjecture that the model risk, as measured by 𝐶𝑆𝑀𝑅 

and other risk measures, is lower when it uses specific data from a subgroup of interest 

rather than data from the entire population data (𝐶𝑆𝑀𝑅𝑏 < 𝐶𝑆𝑀𝑅𝑓𝑢𝑙𝑙|𝑏 ), which 

demystifies the prevailing understanding among many practitioners that, the greater the 

number of observations, the smaller the model risk. In fact, our empirical application 

shows segmented models exhibit lower model risk than aggregate models, due to banks’ 

heterogeneities.35 

 

In the second application, empirical evidence shows FE does not always lead to lower 

model risk in LASSO regressions. However, we argue it is preferable to use fixed-effects 

models since they produce quite the same results and are easier to implement and 

maintain. 

 

These findings are relevant for practitioners and regulators. Although our hypotheses are 

generally confirmed, they are contingent upon the covariance matrix between the 

dependent variable and its conditional prediction, as well as the estimation method used. 

 
35 The empirical exceptions in the first application are not statistically significant. We cannot observe a 

stochastic approach dominance in our model risk measure. It is crucial to monitor model risk in out-of-time 

data. 
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The results highlight the crucial need to carefully measure and monitor model risk, which 

can be facilitated by our proposed model risk measure. The 𝐶𝑆𝑀𝑅 is intuitive and easy 

to calculate and offers opportunities for further research, such as investigating the 

existence of models and methods with stochastic dominance, proposing an autoregressive 

correlation model to gauge the rate of model miscalibration over time, and exploring 

alternative databases and estimation methods. 
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Appendix A 

The development of 𝑀𝑏 − 𝑀𝑔, used in Lemma 3, Equation (8), uses the “R-mechanism”, 

as proposed by Meng (2018) to treat non-probabilistic samples. The “R”, or “R-

mechanism” is used to point out the mechanism by which the sample (or subset) was 

generated. Assuming a sample or subset of population 𝑁, {𝑌̂𝑗 , 𝑗 ∈ 𝐼𝑛}, where 𝐼𝑛 is an 𝑛-

size subset of {1, … , 𝑁}, the most routinely adopted estimator for the population mean, 

𝑌̅̂𝑁, is the sample: 

𝑌̅̂𝑛 =
1

𝑛
∑ 𝑌̂𝑗

𝑗∈𝐼𝑛

=
∑ 𝑅𝑗𝑌̂𝑗

𝑁
𝑗=1

∑ 𝑅𝑗
𝑁
𝑗=1

, (21) 

where 𝑅𝑗 = 1 if 𝑗 ∈ 𝐼𝑛 and 𝑅𝑗 = 0, otherwise. 

 

𝑀𝑏 − 𝑀𝑔 = 𝑌̅̂𝑏 − 𝑌̅̂𝑔 =
𝐸𝐽(𝑅𝑏𝑌̂𝐽)

𝐸𝐽(𝑅𝑏)
−

𝐸𝐽(𝑅𝑔𝑌̂𝐽)

𝐸𝐽(𝑅𝑔)
=

𝐸𝐽(𝑅𝑏𝑌̂𝐽)

𝐸𝐽(𝑅𝑏)
−

𝐸𝐽((1 − 𝑅𝑏)𝑌̂𝐽)

1 − 𝐸𝐽(𝑅𝑏)

=
𝐸𝐽(𝑅𝑏𝑌̂𝐽) (1 − 𝐸𝐽(𝑅𝑏)) − 𝐸𝐽((1 − 𝑅𝑏)𝑌̂𝐽) 𝐸𝐽(𝑅𝑏)

𝐸𝐽(𝑅𝑏) (1 − 𝐸𝐽(𝑅𝑏))

=
𝐸𝐽(𝑅𝑏𝑌̂𝐽) − 𝐸𝐽(𝑅𝑏𝑌̂𝐽) 𝐸𝐽(𝑅𝑏) − 𝐸𝐽 (𝑌̂𝐽 𝐸𝑗(𝑅𝑏)) + 𝐸𝐽(𝑅𝑏𝑌̂𝐽) 𝐸𝐽(𝑅𝑏)

𝐸𝐽(𝑅𝑏) (1 − 𝐸𝐽(𝑅𝑏))

=
𝐸𝐽(𝑅𝑏𝑌̂𝐽) − 𝐸𝐽 (𝑌̂𝐽 𝐸𝐽(𝑅𝑏))

𝐸𝐽(𝑅𝑏) (1 − 𝐸𝐽(𝑅𝑏))
=

𝐸𝐽(𝑅𝑏𝑌̂𝐽) − 𝐸𝐽(𝑅𝑏) 𝐸𝐽(𝑌̂𝐽)

𝐸𝐽(𝑅𝑏) (1 −  𝐸𝐽(𝑅𝑏))

=
𝐶𝑜𝑣𝐽(𝑅𝑏 , 𝑌̂𝐽)

𝐸𝐽(𝑅𝑏) (1 − 𝐸𝐽(𝑅𝑏))
=

𝜌𝑅𝑏,𝑌̂ × 𝜎𝑅𝑏
× 𝜎𝑌̂

𝐸𝐽(𝑅𝑏) (1 − 𝐸𝐽(𝑅𝑏))
= 𝜌𝑅𝑏,𝑌̂ ×

𝜎𝑅𝑏

𝑛𝑏

𝑁  (1 −
𝑛𝑏

𝑁 )
× 𝜎𝑌̂

= 𝜌𝑅𝑏,𝑌̂ ×
𝜎𝑅𝑏

𝜎𝑅𝑏

2 × 𝜎𝑌̂ = 𝜌𝑅𝑏,𝑌̂ ×
𝜎𝑌̂

𝜎𝑅𝑏

 

(22) 

where 𝑌̅̂𝑏 is equal to 𝑀𝑏, or the average of the model's default predictions for bad loans; 

𝑌̅̂𝑔 is equal to 𝑀𝑔, or the average of the model's default predictions for good loans; 

𝐸𝐽(. ) is the expected value for observation 𝑗; and 

𝑅𝑏 is the “𝑅-mechanism”, or an indicator that assumes value one if the loan becomes on 

default. By construction, 𝑅𝑏 is equal 𝑌, the dependent variable which marks default. 
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Appendix B 

GeoSampa’s variables are in number of equipment and devices per “weighting area”. 
 

Variables by theme 

Civil Defense and Protection 

1. Contaminated Area 

2. Field Support 

3. Geological Risk Area 

4. Geotechnics 

5. Notified Property 

6. Onerous Grant 

7. Quoted Point 

8. Quoted Point “Intervia” 

9. Rain gauge 

 

Cultural Patrimony 

10. Asset of Archaeological Interest 

11. Archaeological Occurrence 

12. Archaeological Site 

13. Cultural Value Seal 

14. Listed Collection 

15. Monument 

16. Register Point 

17. São Paulo Memory Inventory 

 

Culture 

18. Cultural Center 

19. Library 

20. Museum 

21. Theater/Cinema/Shows 

22. Others 

 

Digital Connectivity 

23. “Telecentre”, Public Wi-Fi 

24. Wi-Fi Square 

Education 

25. CEU – Unified Educational Center 

26. Early Childhood Education 

27. Elementary and High School 

28. Private Network 

29. Public Technical Education 

30. Senai / Sesi / Senac 

31. Others 

 

Health 

32. Emergency 

33. Health Surveillance 

34. Hospital 

35. Mental Health 

36. Specialized Clinics 

37. STD/AIDS Unit 

38. UBS / Health Center 

39. Others 

 

Human Rights 

40. Guardianship Council 

41. Child and Adolescent Entities 

42. Women’s Protection 

 

Natural Resources / Green 

43. Tree 

 

Safety 

44. Civil Police 

45. Firefighters 

46. Mediation Home 

47. Metropolitan Civil Guard 

48. Military Police 
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Services 

49. Citizen Assistance Service 

50. Consulate 

51. “Enel” 

52. Internal Revenue Service 

53. “Poupatempo” 

54. Post Office 

55. “Sabesp” 

56. Service Network 

57. Subprefecture 

58. Work and Entrepreneur Support 

Center 

59. Zoonoses Control Center 

 

Social Assistance 

60. Social Assistance 

 

Sport 

61. Club 

62. Community Club 

63. Sports Center 

64. Stadium 

65. Others 

Supply 

66. “Bom Prato”, Public Restaurant 

67. Free Fair 

68. Municipal Market 

69. “Sacolão”, Popular Market 

 

Transport 

70. Bus Stop 

71. Bus Terminal 

72. Subway Station 

73. Train Station 

 

Urban Infrastructure 

74. Accessibility Seal 

75. “Ecopoint” 

76. High Voltage Tower 

77. Industrial License 

78. Productive Unit 

79. Public Lighting Points 

80. Semaphore 

81. “Transpetro” 

82. “Weighting Area” Area 

48



Appendix C – Proof of the Corollaries 

Corollary 1. As in Lemma 1, Equation (3) defines a relative risk measure (between zero and 

one), and CSMR is also a relative measure.

0 ≤ 𝐶𝑆𝑀𝑅 ≤ 1. (14) 

Proof. In Equation (5), we defined the model risk in credit scoring models as

𝐶𝑆𝑀𝑅 = 1 − |𝜌𝑌,𝑌̂|. (5) 

Since 0 ≤ |𝜌𝑌,𝑌̂| ≤ 1, thus 0 ≤ 𝐶𝑆𝑀𝑅 ≤ 1.

Corollary 2. When estimated on an OLS regression containing only the data for which 

predictions are required, the Credit Scoring Model Risk (𝑪𝑺𝑴𝑹) can be written as a function of 

the coefficient of determination, 𝐑𝟐:

𝐶𝑆𝑀𝑅 = 1 − √𝑅2. (15) 

Proof. In OLS regressions models |𝜌𝑌,𝑌̂| = √𝑅2. Thus 𝐶𝑆𝑀𝑅 = 1 − √𝑅2.

Corollary 3. For OLS regressions, the Mahalanobis’ Distance, as defined in Lemma 3, 

Equation (8), can be estimated as a function of the coefficient of determination, 𝐑𝟐 (or √𝑹𝟐):

𝐷 =
|𝜌𝑌,𝑌̂|

𝜎𝑌
=

√𝑅2

𝜎𝑌
. (17) 

Proof. In Lemma 3 (Equation 8), we define the Malahanobis’ Distance as 

𝐷 =
𝑀𝑏 − 𝑀𝑔

𝜎𝑌̂

= |𝜌𝑌,𝑌̂| ×
𝜎𝑌̂

𝜎𝑌
×

1

𝜎𝑌̂

= |𝜌𝑌,𝑌̂| ×
1

𝜎𝑌
=

|𝜌𝑌,𝑌̂|

𝜎𝑌
. (8) 

In OLS regressions models |𝜌𝑌,𝑌̂| = √𝑅2. Thus

𝐷 =
|𝜌𝑌,𝑌̂|

𝜎𝑌
=

√𝑅2

𝜎𝑌
. 
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