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Abstract This paper investigates why micro-prudential regulations such as capital re-

quirement fail to maintain the stability of a financial system. With a static model on fi-

nancial institutions’ risk-taking behavior, we quantify the impact on systemic risk in the

cross-sectional dimension when imposing a capital requirement. Although imposing a capi-

tal requirement can lower individual risk, it enhances the systemic linkage within the system

at the same time. With a proper systemic risk measure combining both individual risks and

systemic linkage, we show that the systemic risk in a regulated system can be higher than

that in a regulation-free system. We discuss a sufficient condition under which the systemic

risk in a regulated system is always lower. Since the condition is based on comparing both

asset and liability sides of bank balance sheets among all institutions in the system, it can be

verified only if all required information are available. This suggests that a macro-prudential

framework is necessary for establishing banking regulations towards the stability of the entire

financial system.
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1 Introduction

Regulations in financial sector are designed for limiting risk-taking of financial institutions

and thus prevent potential financial crises. With the failure of the investment bank Lehman

Brothers in 2008, the financial system in the US and the EU came close to a complete

meltdown. This raises the questioning on current financial regulation rules, such as the Basel

I and II Accords. Current policy debate points to the direction of imposing macro-prudential

tools which aim at the stability of the entire financial system. The word “macro-prudential”

is considered as the opposite of “micro-prudential” which refers to incumbent regulations

that focus on limiting risk-taking behavior of individual financial institutions. Academical

research has attempted to document what went wrong with micro-prudential regulations,

and consequently provide recommendations to the regulation reform. This paper fits this

literature by studying the impact of imposing micro-prudential regulation to the systemic

risk in the cross-sectional dimension. We confirm that micro-prudential regulation may fail

to limit systemic risk and consequently leads the financial system to an instable scenario.

The general critique on micro-prudential regulation is that it fails to achieve the goal of

maintaining the stability of a financial system as a whole. In other words, it fails to limit

the systemic risk. Such a critique is valid since regulations at micro level are by definition

towards limiting individual financial institution from taking excessive risk, which may not

necessarily lower the systemic risk at the same time. Nevertheless, to obtain a complete

view on the consequence of imposing micro-prudential regulation, it is necessary to conduct

a systemic risk analysis. This helps identify under which circumstance, micro-prudential

regulation may fail in reducing systemic risk.

Systemic risk refers to the risk that a large proportion of the financial system fall into

crises or distresses, which consequently leads to an adverse impact on the macro economy.1

We distinguish systemic risk in two dimensions: the time dimension, i.e. the interaction

between the financial system and the macro economy, and the cross-sectional dimension, i.e.

1For an overview on the systemic risk, we refer to de Bandt and Hartmann (2001) and Allen et al. (2009).
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the interconnectedness among financial institutions. On both dimensions, current micro-

prudential regulation fails in limiting systemic risk. On the time dimension, the evolution

of banks’ risk-taking behavior may result in a procyclicality problem. Time-invariant micro-

prudential regulation may enhance such a problem and thus leads to a high systemic risk2.

In recent studies, the other dimension of systemic risk, the cross-sectional dimension, has

caught attention. The interconnectedness within the financial system is established from

either a direct channel such as interbank lending3 or an indirect channel that financial in-

stitutions share common exposures due to diversification at individual level4. This study

targets to quantify the impact of micro-prudential regulation on the cross-sectional dimen-

sion of systemic risk.

We establish a static model on banks’ risk-taking behavior under two scenarios: a sys-

tem with regulation and a regulation-free system. We model banks’ asset decomposition by

optimizing their portfolio with respect to a return-downside risk utility. Considering that

financial institutions are interconnected because of common risk exposures, the intercon-

nectedness, or in other words, systemic linkage, is then determined by the similarity between

their banking activities. The key feature in the model is that when financial institutions

rebalance their portfolio in order to obey the same regulation rule, their portfolios turn to

be more similar, which enhances the systemic linkage within the system. Therefore, although

in the regulated system, the individual risk of each institution is lower, the systemic linkage

within the system is higher. With defining a systemic risk measure that combines individual

risk with systemic linkage, we compare the systemic risks in the two cases and obtain that,

under certain condition, the systemic risk can be higher in the regulated case. Moreover,

we discuss a sufficient condition under which the systemic risk in the regulated system is

always lower. Since the sufficient condition is based on comparing both the asset and liability

sides of balance sheets among all institutions within the system, it can be only verified when

2See, for example, Borio et al. (2001), Borio and Zhu (2008), Brunnermeier et al. (2009), Shin (2009),
Zhu (2008) and among others.

3See, for example, Allen and Gale (2000), Freixas et al. (2000), Dasgupta (2004) and among others.
4See, for example, Lagunoff and Schreft (2001), de Vries (2005) and Wagner (2010).
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having all relevant information and forming a helicopter view on the entire system. This

suggests that a macro-prudential framework is necessary for establishing regulations towards

the stability of the financial system as a whole.

This study is comparable with Acharya (2009), which investigates the impact of micro-

prudential regulation on the cross-sectional dimension of systemic risk by a multi-period

general equilibrium model. Acharya (2009) shows that micro-prudential regulation based

only the own risk of individual banks can in fact accentuate the systemic risk. We intend to

avoid the dynamic on the time dimension, while focusing on the interconnectedness. Thus

we consider a static model. Nevertheless, it is sufficient to show similar conclusion as in

Acharya (2009). Differently, this model helps identify under which scenario, micro-prudential

regulation can effectively reduce the systemic risk.

Another stream of literature that is relevant to this study are the measures for systemic

risk. Here we employ the systemic risk measure proposed by Segoviano and Goodhart (2009).

However, our qualitative conclusion is not limited to this specific choice because most of

systemic risk measures in literature bear the same feature that with strong systemic linkage,

the systemic risk is high. For measures on systemic risk and systemic importance of financial

institutions, see Adrian and Brunnermeier (2008), Tarashev et al. (2009a), Tarashev et al.

(2009b), Huang et al. (2009) and Zhou (2010a).

Our finding on the limitation of micro-prudential regulation has direct policy implica-

tions. The model suggests that it is necessary to have a macro-prudential regulator holding

all relevant information of all financial institutions and forming a helicopter view on the

system. That includes monitoring all banks’ asset decompositions as well as their capital

structures. From our result, we conclude that when regulating a financial system consisting

of institutions with similar banking activities, a micro-prudential regulation can be suffi-

cient for reducing systemic risk. In contrast, the macro-prudential regulation is particularly

necessary when regulating a diversified financial system which contains heterogeneous finan-

cial institutions focusing on different banking activities. For such a system, it is necessary
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to identify the systemically important institutions (SIFIs) and impose proper prudential

regulations on them. This is crucial for managing the systemic risk in the system.

The paper is organized as follows. Section 2 presents the general setup of the model. Sec-

tion 3 analyzes the impact on individual risk when imposing a capital requirement regulation.

The main results on comparing the systemic risks in the regulated and regulation-free cases

are established in Section 4. Section 5 provides policy discussions and potential extensions

of this study. Proofs of the results are gathered in the Appendix.

2 The Model

We introduce the general setup of our model in Section 2.1. Then we discuss the heavy-

tailed feature on asset returns in Section 2.2. Section 2.3 discusses a few assumptions that

are useful for simplifying the analysis.

2.1 General Setup

Consider a financial system consisting of two banks. Each bank can invest in two risky

projects and the risk-free rate. The expected returns of the two projects R1 and R2 are µ1

and µ2 respectively. Without loss of generality, we assume that the risk-free rate is zero and

µ2 > µ1 > 0. Moreover, the two projects are independent.

From the bank side, suppose Bank j holds a portfolio Pj = wj1R1 + wj2R2, j = 1, 2. For

simplicity, short selling is not allowed, i.e. wji ≥ 0 and wj1 + wj2 ≤ 1, for j = 1, 2. The

portfolio holding is optimized according to a mean-downside risk utility. Suppose the two

banks have different levels of risk aversion λj, j = 1, 2. Without loss of generality, we assume

that λ1 ≤ λ2, i.e. Bank 1 is less risk averse. More precisely, the utility function of Bank j is

given as

Uj = wj1µ1 + wj2µ2 − λjD(wj1, wj2), (2.1)

where D(wj1, wj2) is a measure of the downside risk. An example for such a risk measure D
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is the variance of the portfolio. Then the utility function turns to be a usual mean-variance

approach. In the regulation-free case, the portfolio holding of each bank is determined by

maximizing the utility in (2.1).

Next, we consider imposing a micro-prudential regulation: capital requirement as in

Basel II. In its elementary form, a capital requirement is calculated from the Value-at-Risk

(VaR) of the portfolio holding and multiplied by a risk-weight appointed by the regulator.

Financial institutions are required to hold sufficient equity capital to achieve the level of

the requirement. In our model, instead of requiring a certain amount of capital holding, we

regard the capital structure of a bank as a non-adjustable characteristic in short term, while

allow banks to adjust their portfolios in order to obey the regulation rule. This setup is in

line with the situation in financial crisis: raising new capital is extremely difficult or very

expensive during a crisis; instead, financial institutions choose to fire sale their assets. Under

such a framework, the capital requirement regulation turns to be a restriction on the VaR

of the portfolio held by a bank.

For a given probability level p, the VaR of Pj, V aRj(p), is defined by the relation P (Pj <

−V aRj(p)) = p. With the VaR of Pj, the capital requirement for Bank j is IjV aRj(p)dj,

where Ij is the total investment on the portfolio, and dj is a multiplier chosen by the regulator.

The capital requirement should be covered by the total (equity) capital raised by the bank,

denoted by Ej. Hence, we get the restriction as IjV aRj(p)dj ≤ Ej, for j = 1, 2. It can be

rewritten as

V aRj(p) ≤ Tj :=
Qj

dj

, (2.2)

where Qj := Ej/Ij is the equity ratio of the bank.

As discussed above, we regard the equity ratios as fixed within a short period. Moreover,

the regulator chooses the regulatory probability level p and the bank specific multiplier

dj ex ante. Hence the threshold Tj in the capital requirement rule (2.2) is regarded as a

characteristic of Bank j which is determined ex ante. By fixing the threshold Tj, the capital

requirement rule (2.2) should be read as a restriction on the VaR of the portfolio held by
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each bank. When a capital requirement is imposed, banks rebalance their portfolios to obey

the rule. Therefore, they solve the constrained utility maximization problem, that is to

maximize the utility in (2.1) with the constrain (2.2).

2.2 The heavy-tailed feature on asset returns

Recall that the expected returns of the two projects are µ1 and µ2, where µ2 > µ1 > 0,

i.e. R2 is more profitable than R1. For the downside risk of the two projects, we consider

the heavy-tailed feature on the downside distributions of the returns.

The heavy-tailedness of the downside distribution of financial assets has been well doc-

umented in the empirical literature, see, e.g. Jansen and De Vries (1991) and Embrechts

et al. (1997). Mathematically, it is assumed as follows. For sufficiently large t, the left tail

of the distribution function of Ri is given as

P (Ri < −t) = Ait
−α(1 + o(1)),

where A2 > A1 > 0, i.e. R2 is more risky than R1. The parameter α is called the tail index,

while Ai is called the scale. Moreover, the right tails of the two asset returns are assumed

to be thinner than the left tails, i.e.

P (Ri > t) = o(t−α).

This ensures that when constructing a portfolio based on R1 and R2, the downside risk of

the portfolio is dominated by the downside risks of the two asset returns, and the right tails

do not intervene. Here we assume equal tail indices α for the two assets. Theoretically, this

is the only case in which diversification on risky assets is beneficial and non-trivial, see Zhou

(2010b). Finally, since we assume the existence of a finite mean, it implies that α > 1. We

remark that all above theoretical assumptions on the tail properties of the asset returns have

been justified by empirical literature; see, e.g., Jansen and De Vries (1991).
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With the equal tail indices among all risky assets, the scale is then a downside risk mea-

sure, which is similar to the variance in the Gaussian framework, see Zhou (2010b). The

difference is that the scale only measures the risk in the downside tail, while the variance

measures the variation around the mean level, which is potentially driven by both the down-

side and upside tails. Since the portfolio optimization problem considers a mean-downside

risk utility, we use the scale as the measure of the downside risk. From the properties of ag-

gregating independent heavy-tailed risks (see, e.g. Feller (1971)), the left tail of the portfolio

return held by Bank j, Pj = wj1R1 + wj2R2 is also heavy-tailed and

P (Pj < −t) = APj
t−α(1 + o(1)),

where the scale of the left tail is APj
= wα

j1A1 +wα
j2A2. We define the downside risk measure

as

D(wj1, wj,2) =
1

α
(wα

j1A1 + wα
j2A2).

5

With the explicit utility function, it is thus possible to solve the portfolio optimization

problem in both the unconstraint and constraint cases.

2.3 Assumptions

We make a few assumptions in order to simplify the analysis on the portfolio optimization

problems. Those assumptions are mainly for simplification in the analysis: they are not

essential for obtaining the stylized results. It is possible to omit those assumptions while

having a full discussion on all scenarios. However, scenarios that are out of those assumptions

are either similar, or trivial.

Assumption 1 In the regulation-free case, the optimal portfolios held by the banks are

not “corner solutions” which assign all portfolio weights to one asset.

5The denominator α is imposed for simplifying the calculation. THi sis similar to the multiplier 1/2 in
the mean-variance approach. It has no impact on the optimization problems.
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Assumption 2 In the regulation-free case, the optimal portfolios held by the banks are

not “partial investment solutions” which assign positive weight to the risk-free asset.

Assumption 3 Any fully invested risky portfolio can not obey the regulation rule.

We explain why those assumptions are useful in simplifying the analysis, but not essential.

Assumption 1 implies that the risk aversion levels of the banks are not too low. If omitted,

it implies that banks are in favor of the riskier asset. Then in the regulation-free case,

only the riskier asset is held by both banks, while imposing a regulation will simply change

their holding on this asset. This makes the systemic risk analysis trivial and meaningless.

Assumption 2 implies that the risk aversion levels are not too high. This assumption can

be always guaranteed by lowering the risk-free rate, which has no impact on the systemic

risk analysis. Assumption 3 implies that the thresholds Tj are sufficiently low such that

the regulation rule is effective. Together with Assumption 2, the optimal portfolio in the

regulation-free case can not satisfy the regulation requirement. Hence, banks must adjust

their investment strategy in order to obey the regulation rule. Without Assumption 3,

banks may simply keep the optimal portfolio in the regulation-free case while still obeying

the capital requirement. In that case, there is nothing to compare between the regulated case

and regulation-free case. Hence the situation is again trivial. Making such an assumption

is also reasonable, because Tj is partially determined by the regulator by choosing a proper

dj, in other words, the regulator can make sure that Tj is sufficiently low such that the

regulation is effective. To summarize, the scenario in which all assumptions are imposed is a

non-trivial and representative case for analyzing the impact of imposing capital requirement

on systemic risk.

3 Capital requirement and individual risk

To study the impact of imposing a capital requirement, we start by analyzing the risk-

taking behaviors of individual financial institution, and compare the two cases: with and
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without a regulation.

In the regulation-free case, the optimal portfolio holding of each bank is given by solving

the the unconstrained utility maximization problem. With the downside-risk measure giving

in Section 2.2, the utility function of Bank j is then

Uj = wj1µ1 + wj2µ2 − λj

α
(wα

j1A1 + wα
j2A2). (3.1)

The solution of the optimal portfolio is given in the following proposition. The proof is

postponed to the Appendix.

Proposition 3.1 With Assumptions 1 and 2 on the risk aversion levels, the solution of the

unconstrained utility maximization problem in the regulation-free case, (w∗
j1, w

∗
j2), is given by

firstly solving the equation

(w∗
j2)

α−1A2 − (1− w∗
j2)

α−1A1 =
µ2 − µ1

λj

, (3.2)

and then taking w∗
j1 = 1− w∗

j2.

Notice that Assumption 1 and 2 ensure the existence of a unique solution of equation (3.2).

Combining the facts that µ2−µ1

λ2
≤ µ2−µ1

λ1
and the left hand side of (3.2) is an increasing

function of w∗
j2, we get that w∗

12 ≥ w∗
22. Intuitively, since Bank 1 is less risk averse, it assigns

higher weight on the riskier asset R2.

Next, we consider the regulated case with a capital requirement. Thus VaR constrain in

inequality (2.2) is now effective. Under the heavy-tailed framework, the calculation of VaR

is convenient thanks to the explicit expansion of the tails. Since the left tail distribution

of the portfolio return Pj is a heavy-tailed distribution with tail index α and scale APj
=

A1w
α
j1 + A2w

α
j2, we get that

V aRj(wj1, wj2; p) ≈
(

A1w
α
j1 + A2w

α
j2

p

)1/α

. (3.3)
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Here the approximation is for low level of p.

With a capital requirement, the optimal portfolio construction for each bank is then

determined by the constrained utility maximization problem. The following proposition

gives the solution to that. The proof is in the Appendix.

Proposition 3.2 Denote ei = (µi/Ai)
1

α−1 for i = 1, 2, and

cj =
Tjp

1/α

((e1)αA1 + (e2)αA2)
1/α

.

With Assumption 1-3, the constrained utility maximization problem is solved by (w̃j1, w̃j2) as

w̃j1 = e1cj, w̃j2 = e2cj. (3.4)

From the optimal solution in (3.4), we get that

w̃j1

w̃j2

=
e1

e2

,

which is irrelevant to j. In other words, the relative portfolio decomposition of the two

banks are the same, the only difference is on the total risky investment, which is constrained

by the regulation rule. This is due to the common regulation rule applied to them: the

capital requirement imposes similar constrains for different institutions, which (partially)

overrides their heterogeneity on risk aversion. Such an intuition applies in general to all

micro-prudential regulation and is not limited to the capital requirement.

Assumption 1-3 ensures that the VaR of the optimal portfolio in the regulated case is

lower than that in the regulation-free case. This reflects the intuition that micro-prudential

regulation targets limiting the individual risks. Thus, without analytical comparison, we can

conclude that imposing a capital requirement help reduce the risk of individual banks, i.e.

A∗
Pj

> ÃPj
for j = 1, 2, where A∗

Pj
and ÃPj

indicates the scales of the downside distributions

of the optimized portfolios in the regulation free and regulated cases.
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4 The impact on systemic risk

From Proposition 3.2, we obtain that with the static model, under the capital requirement

regulation, the relative portfolio decomposition are the same across different banks. This

implies that the two banks in the system are highly systemically linked: the portfolio returns

of the two banks are completely dependent. More specifically, any dependence measure, such

as correlation coefficient or tail dependence measure (see, e.g. de Vries (2005) and De Jonghe

(2010)), achieves its maximum when analyzing the dependence of the two banks in this

case. Hence, the impact of imposing a micro-prudential regulation is two-folded: although

imposing a micro-prudential regulation can reduce individual risk as it intends to, at the

same time it overrides the heterogeneity on individual risk aversions. As a consequence,

financial institutions tend to hold more similar portfolios which results in a higher systemic

linkage.

To evaluate the tradeoff at the systemic risk level, it is necessary to consider a systemic

risk measure that combines individual risk with systemic linkage. For instance, a fully in-

terconnected system with no individual risk should be regarded as having no systemic risk.

Only with a proper systemic risk measure, it is possible to evaluate the tradeoff between re-

ducing individual risk and increasing systemic linkage and further assess whether a regulated

system corresponds to a lower level of systemic risk.

Since our simple static model consists of two banks, an example of a proper systemic risk

measure is the probability that both banks are insolvent. With the notation in Section 2,

the measure is given as

SR := P (P1 < −Q1, P2 < −Q2), (4.1)

where Qj is the capital ratio for Bank j. This measure is a special case of the banking

stability index discussed in Segoviano and Goodhart (2009).

Apparently, the probability measure in (4.1) is associated to both individual risks of P1

and P2 and the dependence between them. Moreover, Qj = djTj is higher than the threshold
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Tj in (2.2) because the regulators usually set a multiplier dj > 1. Thus the probability in

(4.1) must be at an extremely low level, much lower than the probability p used in the

regulation rule. Hence it is a probability of a tail event. We use Extreme Value Theory

(EVT) to make approximate calculation on such a tail probability.

With the affine portfolio model, and the heavy-tail feature of asset returns, the left

tail of the bank portfolio returns (P1, P2) follows a bivariate EVT setup, and exhibits tail

dependence, see e.g. de Vries (2005). For details on multivariate (or bivariate) EVT, see

de Haan and Ferreira (2006). The following lemma shows how to calculate SR given the

portfolio structure.

Lemma 4.1 Suppose Bank j holds a portfolio (wj1, wj2) for j = 1, 2. Then the systemic

risk measure in (4.1) is calculated as

SR ≈ A1

(
wα

11

Qα
1

∧ wα
21

Qα
2

)
+ A2

(
wα

12

Qα
1

∧ wα
22

Qα
2

)
. (4.2)

From (4.2), when increasing the capital ratio of a bank, the systemic risk may decrease or

remain at the same level due to the minimum feature in the formula.

A modification of the formula on SR is that

SR ≈ A1
wα

21

Qα
1

(
w11

w21

∧ Q1

Q2

)α

+ A2
wα

22

Qα
1

(
w12

w22

∧ Q1

Q2

)α

. (4.3)

From this representation, we observe that for calculating SR, it is necessary to compare w11

w21

and w12

w22
with Q1

Q2
.

With the formula (4.2), we compare the systemic risk measures in the regulation-free and

the regulated cases. The result is presented in the following proposition.

Proposition 4.2 Consider systemic risk measured by the SR measure in (4.1). Denote the

systemic risk measures in the regulation-free and regulated cases as SR∗ and S̃R respectively.

From the solution of the optimal portfolio in the regulation-free case, w∗
ji, i = 1, 2 and
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j = 1, 2, we define two thresholds as





l(λ1, λ2; µ1, µ2, A1, A2) :=
w∗11
w∗21

r(λ1, λ2; µ1, µ2, A1, A2) :=
w∗12
w∗22

(4.4)

It is clear that l < 1 < r, provided by λ1 < λ2.

If Q1

Q2
≤ l or Q1

Q2
≥ r, we have that SR∗ > S̃R, i.e. in the regulated system,the total

systemic risk is lower.

If l < Q1

Q2
< r, with suitable choices of the parameters λj, dj, j = 1, 2 and µi, Ai, i = 1, 2,

it is possible to have SR∗ < S̃R, i.e. the systemic risk in the regulated case can be higher

than that in the regulation-free case.

We summarize the impacts of imposing a capital requirement on individual risk, systemic

linkage and systemic risk in the following theorem.

Theorem 4.3 Under the affine portfolio model of banking activities, when imposing a capital

requirement, compared to the regulation-free case, we have that 1) the individual risk of each

bank is lower; 2) the systemic linkage within the banking system is higher; 3) the systemic

risk within the banking system is lower if the capital ratios of the two banks are sufficiently

distinguished, i.e. Q1

Q2
is out of the range (l, r), where l and r are determined by the risk

aversion levels of the two banks as in (4.4). If l < Q1

Q2
< r, it is possible that the systemic

risk in the regulated system is higher.

From Theorem 4.3, the systemic risk in the regulated system may achieve a higher level

compared to that in the regulation-free case. In other words, the higher systemic linkage

within the system imposed by micro-prudential regulation lead to a “cost” in terms of in-

creasing systemic linkage, which offsets the “benefit” gained from lower individual risks.

Whether the tradeoff at the systemic risk level is beneficial depends on whether Q1

Q2
is out of

the range (l, r). Hence, this can be regarded as a sufficient condition for having a successful

micro-prudential regulation. We further discuss this sufficient condition.
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Firstly, the validation of the sufficient condition requires a macro-prudential view on the

system. By definition, both l and r are determined by the portfolio holding strategies of

the banks, i.e. the asset side of the balance sheet. Meanwhile, Q1

Q2
is a comparison between

the capital ratios of the two banks, i.e. the liability side of the balance sheet. Hence, the

condition whether Q1

Q2
lies in between l and r is a comparison between the asset and liability

sides of the balance sheets of the two banks. It can not be verified by having information

on only one of the two banks or only one side of the balance sheets. Therefore, Theorem

4.3 demonstrates the potential limitation of micro-prudential regulation based on limited

information. To overcome such a limitation it is necessary to have a helicopter view on the

strategies and the liability compositions of all banks in the system. In other words, it is

necessary to have a macro-prudential approach.

Secondly, we analyze when the sufficient condition holds. It is not difficult to verify that

∂l

∂λ1

> 0,
∂r

∂λ1

< 0,
∂l

∂λ2

< 0,
∂r

∂λ2

> 0.

Thus, fixing λ2, an increase in λ1 would increase l but decrease r. Notice that λ1 < λ2,

increasing λ1 is in fact reducing the heterogeneity between the risk aversion of the two

banks. Similar result can be observed when fixing λ1 and varying λ2. We thus conclude that

when reducing the heterogeneity between λ1 and λ2, the range of (l, r) will be reduced. With

a narrower range of (l, r), it is more likely that the ratio Q1

Q2
falls out of the range. Hence,

when the two banks are more homogeneous in terms of risk aversion, the capital requirement

regulation may be more effective in reducing systemic risk. Such an observation comes from

the following intuition. When the two banks are more similar in their asset allocations,

their systemic linkage in the regulation-free case would be at a high level. Imposing the

capital requirement increases the systemic linkage further. However, that is a relatively

minor effect compared to the reduction on individual bank risk caused by imposing the

regulation. Therefore, the tradeoff is eventually on the beneficial side: the systemic risk in
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the regulated case will be lower. Conversely, when the two banks are more heterogeneous in

terms of asset decomposition, their systemic linkage in the regulation-free case would be at a

low level. Then imposing a capital requirement regulation might increases the systemic risk

because the impact on enhancing systemic linkage may dominate the impact on individual

risk reduction.

Thirdly, we investigate an alternative way on reducing systemic risk, when the sufficient

condition holds. If Q1

Q2
< l, from (4.3), we get that

SR∗ ≈ A1
(w∗

21)
α

Qα
1

(
Q1

Q2

)α

+ A2
(w∗

22)
α

Qα
1

(
Q1

Q2

)α

=
A1(w

∗
21)

α + A2(w
∗
22)

α

Qα
2

.

Symmetrically, when Q1

Q2
> r,

SR∗ ≈ A1(w
∗
11)

α + A2(w
∗
12)

α

Qα
1

.

Therefore, when Q1

Q2
falls out of the range (l, r), the systemic risk in the regulation-free

case mainly stems from the risk of one bank. In other words, one of the two banks is

more “systemically important” than the other. In such a case, imposing a strict regulation

to reduce the individual risk of the systemically important bank is effective in reducing

systemic risk, even if the riskiness of the other bank stays at its initial level. Hence, even

if a micro-prudential regulation is effective in reducing systemic risk, it is useful to identify

systemically important financial institutions (SIFI) and imposing more strict rule on them.

Obviously, to identify the SIFI in our model, it is again necessary to have an overview on

both banks’ asset and liability composition.

5 Policy discussions and extensions

This paper studies why imposing a micro-prudential regulation may not reduce systemic

risk and maintain the stability of a banking system as it intends to. As an example of a
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micro-prudential regulation tool, we consider the capital requirement rule as in Basel II. With

the static model, we demonstrate the impact of imposing a capital requirement: although

it effectively reduces the individual risks, it also enhance the systemic linkage. The tradeoff

may result in a higher systemic risk in the regulated system than that in a regulation-free

system. If the liability sides of the balance sheets of the two banks are more heterogeneous

than their asset sides, the systemic risk in the regulated system is always lower than that in

the regulation-free system.

Throughout the paper, we consider capital requirement as the micro-prudential regulation

rule. A system with such a regulation may have a higher systemic risk, because the regulation

rule can override the risk appetite of individual financial institutions in guiding the formation

of their portfolio holdings, and thus leads to a higher systemic linkage. This intuition is not

limited to capital requirement regulation. It applies to all micro-prudential approaches based

on a unified rule that applies to all financial institutions in a system. Therefore, we stress that

the potential drawback raised in this study is a drawback of all micro-prudential regulations,

rather than that of a particular micro-prudential tool.

Policy wise, the findings in this paper have the following implications. Firstly, our result

shows the limitation of micro-prudential regulation and the necessity of having a macro-

prudential regulation framework. Particularly, the model suggests that it is necessary to

have a macro-prudential regulator holding a helicopter view on all financial institutions in

the system. That includes monitoring banking activities as well as liability compositions

of all financial institutions. Such a macro-prudential framework helps justify whether a

(micro-prudential) regulation tool indeed help reduce systemic risk. It is worth mentioning

that although a macro-prudential framework is necessary, we may not have to construct new

“macro-prudential tools”. With carefully monitoring the financial system from a macro-

prudential view, the micro-prudential tools such as capital requirement may act as the prac-

tical tool for implementing regulations. In the end, a proper regulation scheme may consist

of macro-prudential framework and micro-prudential tools: “macro-prudential” should be
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regarded as a general guidance on how to implement regulation tools, while the practical

regulation tools can still be the same as in “micro-prudential” regulations.

Secondly, we also provide policy advice for regulating different types of financial systems.

When regulating a system consisting of similar institutions, or in other words, the system

is highly interconnected, considering a micro-prudential regulation can be sufficient for re-

ducing the overall systemic risk. In contrast, the macro-prudential regulation is particularly

important when regulating a diversified financial system consisting of heterogeneous finan-

cial institutions focusing on different banking activities. In both cases, strict regulations on

SIFIs are effective in reducing systemic risk. A macro-prudential regulator is again necessary

in order to identify SIFIs in the system.

We consider a few potential extensions of our model.

Firstly, the model is static, i.e. it only considers systemic risk in the cross-sectional di-

mension, without addressing the potential impact of micro-prudential regulation on the time

dimension. This is due to the fact that we intend to focus on the cross-sectional dimen-

sion. On the time dimension, it has been well documented that current micro-prudential

regulations may have a procyclicality problem. A counter-cyclical regulation is thus favored,

i.e. the multiplier dj may vary according to macroeconomic environment. Considering such

a variation may partially address some impact of imposing counter-cyclical, or in general

time-varying, regulation. Notice that when dj is in a very low level, the regulation rule may

not be effective, i.e. Assumption 3 may not be valid. Increasing dj to a high level makes the

regulation rule effective. Therefore, increasing dj may mimic the procedure of imposing the

regulation rule to a regulation-free system. According to our result, this may actually impose

higher systemic risk. From the calculation of the systemic risk, when dj is sufficiently high

for which the regulation is effective, further increasing dj will always reduce the systemic

risk. Nevertheless, even in the latter case, the systemic risk is still possible to be higher than

that in the regulation-free case. Therefore, the problem we raised based on systemic risk in

the cross-sectional dimension can not be solved by considering counter-cyclical regulations.
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It is thus necessary to analyze the overall impact of time-varying regulation rule on systemic

risk in both dimensions. This is left for future research.

Secondly, our model assumes that the capital ratios are fixed, at least in short term. This

assumption implies that in order to obey the regulation, a bank must adjust its portfolio

holding. In reality, financial institutions may raise more capital to achieve the same goal.

To relax this assumption, the corresponding extention of our framework is then to allow

changes of Q1 and Q2. From (4.2), increasing capital ratio will decrease or maintain the

level of systemic risk. Thus if possible, it is indeed better off increasing the capital ratios.

However, changing Q1 and Q2 will correspondingly change the ratio Q1

Q2
. A potential outcome

is that the value of Q1

Q2
can move from out of the range (l, r) to the inner part of (l, r), or

vice versa. This may change the stylized property on whether the systemic risk is lower for

the regulated case than the regulation-free case. If financial institutions raise capital such

that their liabilities compositions are similar, then although the systemic risk is reduced in

absolute level, the systemic risk under regulation is still possible to be higher than that in

the regulation-free case. Particularly, if both banks follow a minimal capital requirement

as in Basel I, i.e. Q1 = Q2, since l < 1 < r, the sufficient condition for a lower systemic

risk in regulated system is always violated. With such a regulation rule, it is likely that the

systemic risk is higher in the regulated case.

The last potential extension is to consider the impact of fire sales. In this model, we

do not consider the relation between banks’ portfolio rebalance behavior and the value of

the assets. When banks fire sale their assets to rebalance their portfolios, it is likely that

the assets are further devalued which corresponds to a distributional change in the asset

returns. Such an effect will enhance the systemic risk in a system with banks having similar

asset allocation. Since we have shown that the systemic linkage in a regulated system is

stronger than that in a regulation free system, taking fire sales effect in to consider will

further enhance our result. For simplicity, we do not impose such a feature in the current

study.
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Appendix: Proofs

Proof of Proposition 3.1

To solve the unconstrained utility maximization problem, we first find the explicit boundaries

for the risk aversion levels under Assumption 1 and 2. It is presented as in the following

lemma.

Lemma A.1 Assumption 1 and 2 are equivalent to the following inequality

µ2 − µ1

A2

< λj <

((
µ1

A1

)1/(α−1)

+

(
µ2

A2

)1/(α−1)
)α−1

, (A.1)

for j = 1, 2.

Proof of Lemma A.1

For Bank j with a portfolio (wj1, wj2), the marginal utility on asset i is calculated as

MUj,i(wj1, wj2) :=
∂Uj

∂wji

= µi − λjw
α−1
ji Ai.

It is clear that, in case wj1 = 1, wj2 = 0, MUj,1(1, 0) < MUj,2(1, 0). Thus, if the optimal

portfolio weights correspond to a corner solution, it must be a corner solution with wj1 = 0

and wj2 = 1, i.e. the optimal portfolio assigns all weights to the more risky asset R2. That

implies MUj,1 ≤ MUj,2 for all wj1 + wj2 = 1. Due to the monotonicity of the two marginal

utilities, we only need to check MUj,1 ≤ MUj,2 at the point wj1 = 0 and wj2 = 1, which

leads to

µ1 ≤ µ2 − λjA2,

i.e. λj ≤ µ2−µ1

A2
. Therefore, the assumption that there is no corner solution is equivalent to

λj > µ2−µ1

A2
, which verifies the lower bound in (A.1).
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For the upper bound, we consider the solution for utility maximization without restric-

tions on wj1, wj2, i.e. the solution of MUj,1 = MUj,2 = 0. That is

w̄ji =

(
µi

λjAi

)1/(α−1)

, for i = 1, 2.

Then, Assumption 2 implies that w̄j1 + w̄j2 > 1, which gives exactly the upper bound of λj

as in (A.1). ¤

From the proof of Lemma A.1, we get that with Assumption 1 and 2, or equivalently under

condition (A.1), it is not possible to achieve MUj,1 = MUj,2 = 0 within the area wj1+wj2 < 1.

Thus, we consider the constrained utility maximization problem with wj1 + wj2 = 1. By the

Lagrange multiplier method, we maximize

U ′
j := Uj −K(wj1 + wj2 − 1).

Denote

MU ′
j,i :=

∂Ũ ′
j

∂wji

= µi − λjw
α−1
ji Ai −K.

By taking MU ′
j,1 = MU ′

j,2 = 0, we get that

µ1 − λj(w
∗
j1)

α−1A1 = µ2 − λj(w
∗
j2)

α−1A2.

Together with w∗
j1 + w∗

j2 = 1, we get that the optimal solution is given by first solving (3.2)

and then taking w∗
j1 = 1 − w∗

j2. Notice that the condition on λj, (A.1), ensures that there

exists a unique solution w∗
j2 in (0, 1). ¤

Proof of Proposition 3.2

Denote the optimal solution of the VaR-constrained utility maximization problem as

(w̃j1, w̃j2). We first show that the optimal solution matches VaR constrain, i.e.

V aRj(w̃j1, w̃j2) = Tj.
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From Assumption 3, it is clear that w̃j1 + w̃j2 < 1. Suppose V aRj(w̃j1, w̃j2) < Tj, then

a small variation on w̃j1 can still obey the regulation rule. In order to have (w̃j1, w̃j2) as the

optimal solution, the marginal utility MUj,1 must be zero at (w̃j1, w̃j2). Similarly, we get

MUj,2 = 0. According to the proof of Lemma (A.1), this can not be achieved in the area

wj1 + wj2 < 1. Thus, by contradiction, we proved that

V aRj(w̃j1, w̃j2) = Tj. (A.2)

With Assumption 3, (A.2) automatically implies that w̃j1 + w̃j2 < 1. Thus, the VaR-

constrained utility maximization problem turns to be a maximization problem on Uj with

the restriction (A.2) only. By the Lagrange multiplier method, we maximize

Ũj := Uj −K ′(V aRj − Tj),

where V aRj is given in (3.3). Denote

M̃U j,i :=
∂Ũj

∂wji

= µi − wα−1
ji Ai


λj +

K ′

p
1
α

(
A1w̃α

j1 + A2w̃α
j2

)1− 1
α


 .

By taking M̃U j,1 = M̃U j,2 = 0, we get that the optimal solution (w̃j1, w̃j2) should satisfy

µ1

µ2

=
A1w̃

α−1
j1

A2w̃
α−1
j2

.

With the notation ei = (µi/Ai)
1

α−1 for i = 1, 2, we get that

w̃j1

w̃j2

=
e1

e2

.

Hence, the relative proportion between the two risky assets, e1

e2
, is irrelevant to the risk

aversion level λj, thus is bank irrelevant. The restriction on VaR determines the total
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investment, which results in the final solution as stated in the proposition. ¤

Proof of Lemma 4.1

The calculation stems from a generalized version of the Feller convolution theorem (see Feller

(1971) and Zhou (2010a)), which gives the tail property on the aggregation of independent

heavy-tail distributed random variables. We sketch the calculation as follows. For extremely

low Q1, Q2, i.e. Qj = O(V aRj(p)) as p → 0, we have that

SR =P (w11R1 + w12R2 < −Q1, w21R1 + w22R2 < −Q2)

∼P (w11R1 ∧ w12R2 < −Q1, w21R1 ∧ w22R2 < −Q2)

∼P

(
R1 < −

(
Q1

w11

∨ Q2

w21

)
or R2 < −

(
Q1

w12

∨ Q2

w22

))

∼A1

(
w11

Q1

∧ w21

Q2

)α

+ A2

(
w12

Q1

∧ w22

Q2

)α

¤.

Proof of Proposition 4.2

Firstly, in the regulated case, from Proposition 3.1, we get that

w̃11

w̃21

=
w̃12

w̃22

=
c1

c2

=
T1

T2

.

In case d1 ≥ d2, we have that Q1

Q2
≥ T1

T2
. From Lemma 4.1, the systemic risk measure in the

regulated case is

S̃R ≈ A1
w̃α

11

Qα
1

+ A2
w̃α

12

Qα
1

= d−α
1 p.

Similarly, for the case d1 ≤ d2 we have that S̃R ≈ d−α
2 p. In all, we get that, for the regulated

case,

S̃R ≈ (d1 ∨ d2)
−αp. (A.3)
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It implies that with imposing a capital requirement, the systemic risk measure is linked to

the tail probability level considered in the regulation, p, and the maximum of the multipliers

applied to the two banks.

Secondly, we calculate the systemic risk measure for the regulation-free case, SR∗. This

is more complicated due to the lack of an explicit expression on w∗
ji for i, j = 1, 2. However,

because the solutions are in the regulation-free case,
w∗11
w∗21

and
w∗12
w∗22

are independent from Q1

Q2
.

Since
w∗11
w∗21

< 1 <
w∗12
w∗22

, we consider the three different cases.

Case 1) Q1

Q2
≤ w∗11

w∗21
=: l

In this case, we get that

SR∗ ≈ A1
(w∗

11)
α

Qα
1

+ A2
(w∗

12)
α

Qα
1

.

Notice that the portfolio (w∗
11, w

∗
12) does not satisfy the regulation rule. It implies that

A1(w
∗
11) + A2(w

∗
12)

α

T α
1

> p.

Thus, SR∗ > d−α
1 p. Comparing with S̃R in (A.3), we get that SR∗ > S̃R. Hence the systemic

risk is lower in the regulated case.

Case 2) Q1

Q2
≥ w∗12

w∗22
=: r

Similar to Case 1), we have in this case SR∗ > d−α
2 p ≥ S̃R. The systemic risk is also lower

in the regulated case.

Case 3) l < Q1

Q2
< r

In this case, we get that

SR∗ ≈ A1
(w∗

11)
α

Qα
1

+ A2
(w∗

22)
α

Qα
2

.

We show that it is possible to have SR∗ < S̃R by choosing particular values of the parame-

ters.

Consider the case Bank 1 is extremely risk seeking and Bank 2 is extremely risk averse,

i.e. λ1 and λ2 reach the lower bound and upper bound for λ respectively. Then (w∗
11, w

∗
12)

is the riskiest corner solution (0, 1) and (w∗
21, w

∗
22) is the unrestricted solution of maximizing

27



the utility as

w∗
22 =

(
µ2

A2

) 1
α−1

(
µ1

A1

) 1
α−1

+
(

µ2

A2

) 1
α−1

=
1

1 +
(

µ1

µ2

A2

A1

) 1
α−1

.

For simplicity, we consider d1 = d2 = d. Then, the systemic risk measure is given as

SR∗ ≈ d−α A2

T α
2


 1

1 +
(

µ1

µ2

A2

A1

) 1
α−1




α

.

Next, we find upper bound for Tj. From Assumption 3, for any wj1 + wj2 = 1,

(
A1w

α
j1 + A2w

α
j2

p

) 1
α

> Tj.

It is not difficult to verify that the minimum of A1w
α
j1 + A2w

α
j2 with constrain wj1 + wj2 = 1

is achieved at

wji = 1− A
1

α−1

i

A
1

α−1

1 + A
1

α−1

2

,

for i = 1, 2. Thus we get the upper bound of Tj as

Tj <
(A1A2)

1/α

p1/α

(
A

1
α−1

1 + A
1

α−1

2

)α−1
α

,

for j = 1, 2. We make further assumption that T2 reaches its upper bound. Then,

1

Tα
2

= p

(
A

1
α−1

1 + A
1

α−1

2

)α−1

A1A2

= p

(
1 +

(
A2

A1

) 1
α−1

)α−1

A2

.
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Lastly, we make assumption on the parameters µ1, µ2, A1, A2 as µ1

µ2
=

(
A1

A2

) 1
α
. We get that

SR∗ ≈ d−αp

(
1 +

(
A2

A1

) 1
α−1

)α−1

(
1 +

(
A2

A1

)1/α
)α .

Notice that A2

A1
> 1. Thus for α > 1, we have

(
1 +

(
A2

A1

) 1
α−1

)α−1

<

(
1 +

(
A2

A1

) 1
α

)α

.

Together with (A.3), we get that SR∗ < d−αp = S̃R. Therefore, in the case Q1

Q2
is in (l, r), it is

possible that the systemic risk in the regulated system is higher than that in the regulation-

free case. ¤

29


