Monetary Policy and Sovereign Debt Vulnerability

Galo Nuño & Carlos Thomas
Banco de España

XVII Annual Inflation Targeting Seminar, Banco Central do Brasil
May 21 2015

1These slides represent the authors’ views and does not necessarily represent those of Banco de España
Motivation: European debt crisis

- Legacy of 2007-9 financial crisis: large fiscal deficits and soaring government debt
- Before summer 2012, sovereign yields rose sharply in EMU periphery (GR, IR, IT, PT, SP) ...
 ... but not in other highly indebted countries (US, UK, etc.)
- Many argue a key difference is: US-UK can deflate debt away, EMU periphery countries cannot
Motivation: role of monetary policy

- What role, if any, should monetary policy play in guaranteeing sovereign debt sustainability?

- Arguments for and against monetary policy involvement:
 - provide 'monetary backstop' against default fears
 - creating inflation also entails costs
 - effect on inflation expectations (and yields) if low monetary credibility

- **This paper**: analyze trade-offs between price stability and sovereign debt sustainability...
 - ... when gov't cannot make credible commitments
Framework of analysis

- Small open-economy, continuous-time model
- Benevolent government issues *nominal* defaultable debt to foreign investors
- Gov’t may default on debt at any time
 - costs of default: exclusion from capital markets + output loss
- Government chooses fiscal (primary deficit) and monetary policy (inflation) under discretion
- Benefits and costs of inflation:
 - debt can be deflated away
 - direct welfare losses
Calibrate to average peripheral EMU economy

Analyze two monetary regimes:

1. *inflationary regime*: benevolent gov't chooses inflation discretionarily
2. *no inflation regime*: zero inflation at all times

In (2), government *gives up* option to deflate debt away
- issue foreign currency debt
- join monetary union with strong anti-inflation mandate

Main result: Welfare is higher in *no inflation regime*, for any debt ratio and on average
Literature review

- Links between sovereign debt vulnerability and monetary policy

- Optimal fundamental sovereign default in quantitative models
 - Aguiar and Gopinath (2006), Arellano (2008), etc.

- Extend literature on continuous-time models of default to the pricing of defaultable nominal sovereign debt
The model: output, prices and debt

- Single consumption good with int’l price = 1. Exogenous output endowment,

\[dY_t = \mu Y_t dt + \sigma Y_t dW_t. \]
The model: output, prices and debt

- Single consumption good with int’l price = 1. Exogenous output endowment,
 \[dY_t = \mu Y_t dt + \sigma Y_t dW_t. \]
- Local currency price,
 \[dP_t = \pi_t P_t dt. \]

\(\mu, \sigma, \pi_t \): parameters

\(\lambda \): amortization rate

\(\delta \): coupon rate

\(\lambda \): amortization rate; fully held by foreign investors

\(Q_t \): Government’s flow of funds

\(B_{new} \): new sovereign debt

\(C_t \): consumption

\(Y_t \): output

\(W_t \): stochastic process

\(P_t \): price

\(\pi_t \): inflation rate

\(\mu, \sigma, \pi_t \): parameters
The model: output, prices and debt

- Single consumption good with int’l price = 1. Exogenous output endowment,

\[dY_t = \mu Y_t dt + \sigma Y_t dW_t. \]

- Local currency price,

\[dP_t = \pi_t P_t dt. \]

- Sovereign debt,

\[dB_t = B_t^{\text{new}} dt - \lambda dtB_t. \]

\(\lambda \): amortization rate; fully held by foreign investors
The model: output, prices and debt

- Single consumption good with int’l price = 1. Exogenous output endowment,
 \[dY_t = \mu Y_t dt + \sigma Y_t dW_t. \]

- Local currency price,
 \[dP_t = \pi_t P_t dt. \]

- Sovereign debt,
 \[dB_t = B_{t}^{new} dt - \lambda dtB_t. \]

 \(\lambda \): amortization rate; fully held by foreign investors

- Government’s flow of funds
 \[Q_t B_{t}^{new} = (\lambda + \delta) B_t + P_t (C_t - Y_t). \]

 \(\delta \): coupon rate
The state variable: debt-to-GDP ratio

- Debt-to-GDP ratio

\[b_t \equiv \frac{B_t}{P_t Y_t} \]
Debt-to-GDP ratio

\[b_t \equiv B_t / (P_t Y_t) \]

Applying Itô’s lemma

\[
\begin{align*}
 db_t &= \left[\left(\frac{r_t \text{ (yield)}}{Q_t} - \lambda + \sigma^2 - \mu - \pi_t \right) b_t + \frac{c_t}{Q_t} \right] \ dt - \sigma b_t dW_t, \\
 \text{where} \\
 c_t &\equiv (C_t - Y_t) / Y_t
\end{align*}
\]

is primary deficit ratio
Household preferences,

\[U_0 = \mathbb{E}^0 \left[\int_0^\infty e^{-\rho t} \left(\log(C_t) - \frac{\psi}{2} \pi_t^2 \right) dt \right]. \]

\(\psi > 0 \): distaste for inflation, reduced-form \(\pi \)-disutility following Aguiar et al. (2013)
Preferences

- Household preferences,

\[U_0 = \mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} \left(\log(C_t) - \frac{\psi}{2} \pi_t^2 \right) dt \right]. \]

\(\psi > 0 \) : distaste for inflation, reduced-form \(\pi \)-disutility following Aguiar et al. (2013)

- Using \(C_t = (1 + c_t) Y_t \),

\[U_0 = \mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} \left(\log(1 + c_t) - \frac{\psi}{2} \pi_t^2 \right) dt \right] + V_{0}^{aut}, \]

where \(V_{0}^{aut} = \mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} \log(Y_t) dt \right] \) is the (exogenous) autarky value
At each point in time, choose
- default or continue repaying debt ⇔ optimal default threshold \(b^* \)
- primary deficit ratio \((c_t) \), inflation rate \((\pi_t) \)

under discretion (take investor’s pricing scheme \(Q(b) \) as given)

First analyze default scenario

Then lay out general optimization problem
The default scenario

- Default (at a debt ratio b) implies
 - exclusion from capital markets (reenter at rate χ)
 - and contraction in output endowment (in logs, $\epsilon \max\{0, b - \hat{b}\}$)
- At end of exclusion period, gov’t reenters markets with debt ratio θb
- Value of defaulting (net of autarky value),

$$V^{def}(b) = -\frac{\epsilon \max\{0, b - \hat{b}\}}{\rho + \chi} + \frac{\chi}{\rho + \chi} V(\theta b).$$
The general problem

Let $T(b^*)$ be *time-to-default*. Government value function,

$$V(b) = \max_{b^*, \{c_t, \pi_t\}} \mathbb{E} \left\{ \int_0^{T(b^*)} e^{-\rho t} \left(\log(1 + c_t) - \frac{\psi}{2} \pi_t^2 \right) dt \right\} + e^{-\rho T(b^*)} V_{\text{def}}(b^*) | b_0 = b$$

subject to b’s law of motion, and

$$V(b^*) = V_{\text{def}}(b^*),$$

$$V'(b^*) = V'_{\text{def}}(b^*),$$

i.e. *value matching & smooth pasting* conditions
The 'no inflation' regime

Consider an alternative scenario where

$$\pi (b) = 0$$

for all b.

Government *renounces* the ability to deflate debt away

Possible interpretations:

- Issue foreign currency debt
- Join a monetary union with a strong anti-inflationary stance
- (Appoint extremely conservative central banker)
International investors (bond pricing)

- Risk-neutral investors can invest elsewhere at riskless real rate \bar{r}
- Unit price of the nominal non-contingent bond

$$Q(b) = \mathbb{E} \left[e^{-\bar{r} \tau} \theta \frac{Y_\tau}{Y_0} Q(\theta b^*) \right] = \frac{\chi}{\bar{r} + \chi - \mu} \theta Q(\theta b^*).$$
Calibration

- Calibrate to the average peripheral EMU economy, time unit = 1 year

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Source/Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{r}</td>
<td>0.04</td>
<td>world real interest rate</td>
<td>standard</td>
</tr>
<tr>
<td>ρ</td>
<td>0.20</td>
<td>subjective discount rate</td>
<td>standard</td>
</tr>
<tr>
<td>μ</td>
<td>0.022</td>
<td>drift output growth</td>
<td>average growth EMU periphery</td>
</tr>
<tr>
<td>σ</td>
<td>0.032</td>
<td>diffusion output growth</td>
<td>growth volatility EMU periphery</td>
</tr>
<tr>
<td>λ</td>
<td>0.16</td>
<td>bond amortization rate</td>
<td>Macaulay duration = 5 years</td>
</tr>
<tr>
<td>δ</td>
<td>0.04</td>
<td>bond coupon rate</td>
<td>price of riskless real bond = 1</td>
</tr>
<tr>
<td>χ</td>
<td>0.33</td>
<td>reentry rate</td>
<td>mean duration of exclusion = 3 years</td>
</tr>
<tr>
<td>θ</td>
<td>0.56</td>
<td>recovery rate parameter</td>
<td>mean recovery rate = 60%</td>
</tr>
<tr>
<td>ϵ</td>
<td>1.50</td>
<td>default cost parameter</td>
<td>output loss during exclusion = 6%</td>
</tr>
<tr>
<td>\hat{b}</td>
<td>0.332</td>
<td>default cost parameter</td>
<td>average external debt/GDP ratio (35.6%)</td>
</tr>
<tr>
<td>ψ</td>
<td>9.15</td>
<td>inflation disutility parameter</td>
<td>mean inflation rate (1987-1997) = 3.2%</td>
</tr>
</tbody>
</table>
Equilibrium: inflationary regime

Value function, V

Bond price, Q

Primary deficit to gdp, c

Inflation, π

Expected time to default, T^e

Nominal interest rate, r
Equilibrium: inflationary vs no-inflation regime

Value function, V

- No inflation
- Inflationary

Primary deficit to gdp, c

Expected time to default, T^e

Bond price, Q

Inflation, π

Nominal interest rate, r
Nominal bond yield $r(b)$ can be decomposed as *risk premium* + *inflation premium*.
Average performance

- Inflationary regime yields lower value function $V(b)$ at any debt ratio, but...

- If it delivers sufficiently lower debt ratio most of the time, average welfare could be higher

- Compute stationary debt distribution so as to calculate unconditional average values
Stationary debt distribution

- Inflationary regime shifts distribution to the left (debt deflation)...

![Graph showing distribution of debt-to-gdp ratio](image-url)
Average performance (cont’d)

- but not enough to make inflationary policy better on average

<table>
<thead>
<tr>
<th></th>
<th>Data 1995-2012</th>
<th>No inflation</th>
<th>Inflationary</th>
</tr>
</thead>
<tbody>
<tr>
<td>debt-to-GDP, b (%)</td>
<td>35.6</td>
<td>35.6</td>
<td>35.6</td>
</tr>
<tr>
<td>primary deficit ratio, c (%)</td>
<td>-4.1</td>
<td>-0.01</td>
<td>-0.12</td>
</tr>
<tr>
<td>inflation, π (%)</td>
<td>0.4</td>
<td>0</td>
<td>3.20</td>
</tr>
<tr>
<td>bond yields (net of \bar{r}), $r - \bar{r}$ (bp)</td>
<td>187</td>
<td>154</td>
<td>448</td>
</tr>
<tr>
<td>risk premium, $r - \tilde{r}$ (bp)</td>
<td>154</td>
<td>154</td>
<td>139</td>
</tr>
<tr>
<td>inflation premium, $\tilde{r} - \bar{r}$ (bp)</td>
<td>33</td>
<td>0</td>
<td>309</td>
</tr>
<tr>
<td>Exp. time to default, T^e (years)</td>
<td>-</td>
<td>29.4</td>
<td>37.1</td>
</tr>
<tr>
<td>Welfare loss, $V - V_{\pi=0}$ (% cons.)</td>
<td>-</td>
<td>0</td>
<td>-0.25</td>
</tr>
</tbody>
</table>

- Again, ↑ in mean risk premia dominated by ↓ in mean inflation premia & direct utility costs
Robustness

- Investigate robustness to alternative calibrations of:
 - bond amortization rate (λ)
 - bond recovery parameter (θ)
 - output loss from default (\hat{b})

- For all parameter values, we continue to find higher average welfare in no-inflation regime
'No inflation' regime equivalent to appointing an extremely conservative central banker

Consider intermediate arrangement: appoint a central banker...
 - who dislikes inflation more than society...
 - ... but not so much as to set $\pi = 0$ at all times

Given government’s $c(b)$ and b^*, central banker chooses π ...

to maximize its value function \tilde{V}, defined similarly to V, but with $\tilde{\psi} \geq \psi$
Monetary policy delegation: results

- Average welfare increases monotonically with $\tilde{\psi}/\psi$ but *never* reaches $\mathbb{E}(V_{\pi=0})$.

![Welfare, V](image1.png)

![Default threshold, b^*](image2.png)

![Average time in exclusion](image3.png)

![Inflation, π](image4.png)

![Primary deficit, c](image5.png)

![Nominal interest rate, r](image6.png)
Conclusions

- Analyzed trade-offs between price stability and sovereign debt sustainability...
 - ... in an open-economy model with nominal debt and optimal default

- Welfare is higher if gov’t renounces the option to deflate debt away, e.g. by
 - issuing foreign currency debt
 - joining an anti-inflationary monetary union

- Intuition: benefits (lower inflation premia, no direct welfare costs) outweigh costs (higher risk premia)
Appendix: Robustness

<table>
<thead>
<tr>
<th></th>
<th>Welfare % cons.</th>
<th>Time to default years</th>
<th>Inflation %</th>
<th>Risk premium bp</th>
<th>Inflation premium bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No inflation</td>
<td>0</td>
<td>29.4</td>
<td>0</td>
<td>317</td>
<td>0</td>
</tr>
<tr>
<td>Inflationary</td>
<td>-0.25</td>
<td>37.1</td>
<td>2.97</td>
<td>298</td>
<td>299</td>
</tr>
<tr>
<td>Difference</td>
<td>0.25</td>
<td>-7.7</td>
<td>-2.97</td>
<td>19</td>
<td>-299</td>
</tr>
<tr>
<td>Duration = 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No inflation</td>
<td>0.1</td>
<td>40.4</td>
<td>0</td>
<td>311</td>
<td>0</td>
</tr>
<tr>
<td>Inflationary</td>
<td>-0.36</td>
<td>47.4</td>
<td>3.28</td>
<td>304</td>
<td>331</td>
</tr>
<tr>
<td>Difference</td>
<td>0.55</td>
<td>-7.0</td>
<td>3.28</td>
<td>7</td>
<td>-331</td>
</tr>
<tr>
<td>Duration = 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No inflation</td>
<td>0.0</td>
<td>26.0</td>
<td>0</td>
<td>309</td>
<td>0</td>
</tr>
<tr>
<td>Inflationary</td>
<td>-0.17</td>
<td>34.7</td>
<td>2.75</td>
<td>278</td>
<td>278</td>
</tr>
<tr>
<td>Difference</td>
<td>0.17</td>
<td>-8.7</td>
<td>-2.75</td>
<td>81</td>
<td>-278</td>
</tr>
<tr>
<td>Recovery rate = 50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No inflation</td>
<td>-0.08</td>
<td>30.7</td>
<td>0</td>
<td>401</td>
<td>0</td>
</tr>
<tr>
<td>Inflationary</td>
<td>-0.33</td>
<td>38.5</td>
<td>3.00</td>
<td>373</td>
<td>302</td>
</tr>
<tr>
<td>Difference</td>
<td>0.25</td>
<td>-7.8</td>
<td>-3.00</td>
<td>28</td>
<td>-302</td>
</tr>
<tr>
<td>Recovery rate = 70%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No inflation</td>
<td>0.09</td>
<td>28.3</td>
<td>0</td>
<td>246</td>
<td>0</td>
</tr>
<tr>
<td>Inflationary</td>
<td>-0.20</td>
<td>35.3</td>
<td>2.94</td>
<td>236</td>
<td>297</td>
</tr>
<tr>
<td>Difference</td>
<td>0.29</td>
<td>-7.5</td>
<td>-2.94</td>
<td>10</td>
<td>-297</td>
</tr>
<tr>
<td>Default costs = 3.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No inflation</td>
<td>0.43</td>
<td>29.7</td>
<td>0</td>
<td>318</td>
<td>0</td>
</tr>
<tr>
<td>Inflationary</td>
<td>0.33</td>
<td>34.6</td>
<td>1.87</td>
<td>304</td>
<td>189</td>
</tr>
<tr>
<td>Difference</td>
<td>0.10</td>
<td>-4.9</td>
<td>-1.87</td>
<td>14</td>
<td>-189</td>
</tr>
<tr>
<td>Default costs = 7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No inflation</td>
<td>-0.22</td>
<td>29.6</td>
<td>0</td>
<td>314</td>
<td>0</td>
</tr>
<tr>
<td>Inflationary</td>
<td>-0.39</td>
<td>38.7</td>
<td>3.50</td>
<td>293</td>
<td>353</td>
</tr>
<tr>
<td>Difference</td>
<td>0.37</td>
<td>-9.1</td>
<td>-3.50</td>
<td>21</td>
<td>-353</td>
</tr>
</tbody>
</table>