Financial networks and systemic fragility

Thiago Christiano Silva
Banco Central do Brasil – Research Department

Coauthors:
Michel Alexandre
Banco Central do Brasil
Benjamin Miranda Tabak
Catholic University of Brasília
The views expressed in this work are those of the author and do not necessarily reflect those of the Banco Central do Brasil nor of its members.
Motivations

- Financial crisis of 2007-2009: shocks can propagate through a variety of channels and cause large disruptions in the economic environment

- Battiston et al. (2016, Science) highlight that the literature is at its early stages in systemic risk estimation as existent models do not consider feedback mechanisms between economic agents

- No way to evaluate the feedback importance between the real and financial sectors → possible underestimation
Contributions

• Flexible framework that models the feedback effect between the real and financial sectors
• The feedback effect gives rise to a novel micro-level financial accelerator that amplifies shocks originating in financial or real sectors
• Multilayer financial networks to estimate systemic risk in a general form

• Application on a comprehensive and unique dataset on micro-level firm and bank data for Brazil → we show that the feedback effect is really important
Related literature

• Nature and causes of systemic risk (SR) in networks are studied either in the real or financial sectors, but not both endogenously → no space for feedback

• Financial sector (interbank) networks
 – Allen and Gale (2000, JPE): ↑ Denser networks ⇒ ↓ SR
 – Blume et al. (2013): ↑ Denser networks ⇒ ↑ SR
 – Acemoglu et al. (2015, AER): phase transition and SR = f (network, shock)
 • When shock is small: ↑ Denser networks ⇒ ↓ SR
 • When shock is large: ↑ Denser networks ⇒ ↑ SR

• Real sector (firm-firm) networks
 – Acemoglu et al. (2012, Econometrica): the role of interconnectedness in amplifying shocks in artificial real sector networks
Our model: feedback & financial accelerator

- Firms in a specific sector receive an external shock
Our model: feedback & financial accelerator

- Firms in a specific sector receive an external shock
- When firms cannot fulfill their loan obligations towards banks, they generate stress in these banks due to assets write-offs
Our model: feedback & financial accelerator

- Firms in a specific sector receive an external shock
- When firms cannot fulfill their loan obligations towards banks, they generate stress in these banks due to assets write-offs
- The reduction on banks’ capital buffers affects regulatory capital constraints and thereby places upper bounds on bank assets, including bank lending
Our model: feedback & financial accelerator

- Firms in a specific sector receive an external shock
- When firms cannot fulfill their loan obligations towards banks, they generate stress in these banks due to assets write-offs
- The reduction on banks’ capital buffers affects regulatory capital constraints and thereby places upper bounds on bank assets, including bank lending
- Thus, the increase in banks’ stress levels feedbacks to the real economy through a credit crunch, which exacerbates the initial shock on firms
Our model: feedback & financial accelerator

- Firms in a specific sector receive an external shock
- When firms cannot fulfill their loan obligations towards banks, they generate stress in these banks due to assets write-offs
- The reduction on banks’ capital buffers affects regulatory capital constraints and thereby places upper bounds on bank assets, including bank lending
- Thus, the increase in banks’ stress levels feedbacks to the real economy through a credit crunch, which exacerbates the initial shock on firms
- Closing the negative cycle, firms are further stressed due to the credit availability constraints imposed by banks, leading them into reduced levels of investment and consumption
Our model: feedback & financial accelerator

- Firms in a specific sector receive an external shock
- When firms cannot fulfill their loan obligations towards banks, they generate stress in these banks due to assets write-offs
- The reduction on banks’ capital buffers affects regulatory capital constraints and thereby places upper bounds on bank assets, including bank lending
- Thus, the increase in banks’ stress levels feedbacks to the real economy through a credit crunch, which exacerbates the initial shock on firms
- Closing the negative cycle, firms are further stressed due to the credit availability constraints imposed by banks, leading them into reduced levels of investment and consumption
- This negative effect on firms’ production levels causes a potential decrease in profit, which is then transmitted back to banks in the form of loan defaults
Our model

- **Vertices**: economic agents
- **Layers**: set of economic agents of the same nature
- **Edges**: potential vulnerabilities
 - **Bank to bank**: potential interbank loan defaults
 - **Firm to firm**: potential defaults in the trade network
 - **Bank to firm**: potential loan default in the real sector
 - **Firm to bank**: potential credit crunches
Dynamical system: definitions & states

- **Nonlinear dynamical system** → conditionally linear as long as no defaults occur
- Dynamical system’s state: **financial stress** → fraction of the loss absorbing capability that has been potentially compromised → similar to Battiston et al. (2012)
- **Gives a sense of continuum between insolvency and solvency**
Dynamical system: stress propagation rule

Bank i’s stress update rule:

$$h_i(t) = \min \left[1, h_i(t-1) + \sum_{j \in B} V_{ij}^{(bank-bank)} \Delta h_j(t-1) + \sum_{u \in F} V_{iu}^{(bank-firm)} \Delta f_u(t-1) \right]$$

Firm k’s stress update rule:

$$f_k(t) = \min \left[1, f_k(t-1) + \sum_{u \in F} V_{ku}^{(firm-firm)} \Delta f_u(t-1) + \sum_{j \in B} V_{kj}^{(bank-firm)} \Delta h_j(t-1) \right]$$
Definition of intra-layer vulnerability matrices

Interbank lending contagion channel

\[V_{ij}^{(bank-bank)} \triangleq \frac{A_{ij}^{(bank-bank)}}{e_i} \]

- \(A_{ij}^{(bank-bank)} \): exposure of bank \(i \) to \(j \)
- \(e_i \): equity of bank \(i \)

Firm credit lines contagion channel

\[V_{ku}^{(firm-firm)} \triangleq \frac{A_{ku}^{(firm-firm)}}{e_k} \]

- \(A_{ku}^{(firm-firm)} \): exposure of firm \(k \) to \(u \)
- \(e_k \): equity of firm \(k \)
Definition of inter-layer vulnerability matrices

\[V_{iu}^{(bank\text{-}firm)} \triangleq \frac{A_{iu}^{(bank\text{-}firm)}}{e_i} \]

\[V_{kj}^{(firm\text{-}bank)} \triangleq (1 - \rho_{kj}) \frac{A_{jk}^{(bank\text{-}firm)}}{e_k} \]

- \(\rho_{kj} \in [0,1] \): firm \(k \)'s ability to substitute bank \(j \) with another bank financer

- bank \(j \) is perfectly substitutable: \(V_{kj}^{(firm\text{-}bank)} = 0 \)
- bank \(j \) is not substitutable: \(V_{kj}^{(firm\text{-}bank)} \propto A_{jk}^{(bank\text{-}firm)} \)

“inability to substitute”
How to estimate bank substitutability?

- \(\rho_{kj} \in [0, 1] \): firm \(k \)'s ability to substitute bank \(j \) with another bank financer

\[
\rho_{kj} = [1 - \lambda_k] [1 - RL_{kj}]
\]

- \(\lambda_k \in [0, 1] \): firm \(k \)'s dependency on bank financing

\[
\lambda_k = \frac{\text{bank}}{\text{bank} + \text{bond} + \text{equity}}
\]

- \(RL_{kj} \in [0, 1] \): relationship lending between \(k \) and \(j \)

\[
RL_{kj} = \frac{\sum_t e^{-t} A_{jk}^{(\text{bank-firm})}(t)}{\sum_{i,t} e^{-t} A_{ik}^{(\text{bank-firm})}(t)}
\]
Definition of systemic risk

- **Intuition**: Initial shock is more harmful the more it stresses economic agents.
- **Systemic risk**: linear combine all the equilibrium stress levels weighted by corresponding importance of each economic agent.

\[
SR = SR^{(\text{financial})} + SR^{(\text{real})} = \sum_{i \in B} h_i^* v_i + \sum_{k \in F} f_k^* v_k - I_\varepsilon
\]

- \(h_i^*, f_k^* \): convergence stress levels
- \(I_\varepsilon \): initial shock
- \(v_j \): economic importance

System's total assets

Initial shock \(I_\varepsilon \)

Additional stress \(SR \)
Theoretical analysis

- System has two dynamical phases
 - **Transient phase**: defaults occur
 - **Persistent phase**: no defaults occur

- Persistent phase → contraction mapping → unique fixed point
Systemic risk: Brazilian financial and real sectors

- Unique supervisory data sets held by the Central Bank of Brazil

- Financial sector layer
 - Edges: only unsecured financial assets
 - Vertices: banking institutions

- Real sector layer
 - Edges: no edges (firm trade network: purchases on credit)
 - Vertices: firms that hold stocks on BM&Fbovespa

- Connection between financial and real sector layers
 - Edges: short-term loans that banks grant to firms → we use the Brazilian credit register
Systemic risk: common sectorial shock \rightarrow 25% smallest sector

- Only additional stress is reported \rightarrow we can easily identify the extent of the contagion and amplification components of systemic risk
- Average over years 2013 – 2015 \rightarrow large persistence
Feedback importance: with & without it

Different profiles for different sectors

Systemic risk gap ranging from 15% to 25%

For a small shock!
Rank inconsistencies: feedback & no feedback versions

Inconsistencies arise because of heterogeneities in the feedback mechanism linking the real and financial sectors.

Systemic risk of the riskiest sector [% real sector total assets]

Food & Beverage

Tertiary

Metal extraction

Feedback curve

No feedback curve

Date: July/2015
Systemic risk: full sectorial defaults

- **Oil & gas** and metal extraction can withstand small shocks because of their relatively large equities.
- With full sectorial shocks, *albeit an extremely implausible assumption*, they would generate considerable risk to the economy.

Systemic risk [% real sector total assets]

- Oil and Gas: 18%
- Metal Extraction: 15%
- Food and Beverage: 12%
- Tertiary Sector: 9%
- Electric Power: 6%
- Construction: 4%
- Other: 3%
- Pulp and Paper: 3%
- Industrial Machineries: 2%
- Chemical: 2%
- Agriculture & Fisheries: 1%
- Technology: 0%
Battiston et al. (2012)’s original DebtRank \(\leq \) Bardoscia et al. (2015)’s differential DebtRank \(\leq \) Our model

- Adds vulnerability cycles
- Adds real sector + feedback

Graphs:
- Original DebtRank (bank-bank only)
- Differential DebtRank (bank-bank only)
- Feedback-based systemic risk (bank-bank & bank-firm)
Conclusions

- General model to assess systemic risk
 - Here, we only show two layers (real and financial sector layers)
 - The extensibility of the model is in the design of the vulnerability matrices

- Stress feedback between real and financial sectors is important in the Brazilian case
 - Regardless of whether the shock starts in the real or financial sector

- Our model may be useful for financial regulation and for financial stability monitoring tools
QUESTIONS & SUGGESTIONS

Thiago Christiano Silva
thiago.silva@bcb.gov.br