The Great Escape?

A Quantitative Evaluation of the Fed’s Liquidity Facilities

Marco Del Negro, Gauti Eggertsson
Andrea Ferrero, Nobuhiro Kiyotaki
Federal Reserve Bank of New York and Princeton University

XIV Annual Inflation Targeting Seminar, Banco Central do Brasil
May, 2012

Disclaimer: The views expressed are mine and do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System
The Fed’s Response to a Black Swan

Source: Board of Governors of the Federal Reserve System, Release H.4.1

- Treasury Securities
- Long Term Treasury Purchases
- Liquidity Facilities
- Agency Debt and MBS

Trillions of $
Questions

• We incorporate the financial friction proposed by Kiyotaki and Moore (2008) – differences in liquidity across assets – into a DSGE model with standard real and nominal rigidities and ask:

1. Can a KM-type liquidity shock quantitatively generate the crisis?

 • Large response of *macro* and financial variables.
Questions

• We incorporate the financial friction proposed by Kiyotaki and Moore (2008) – differences in liquidity across assets – into a DSGE model with standard real and nominal rigidities and ask:

1 Can a KM-type liquidity shock quantitatively generate the crisis?
 • Large response of macro and financial variables.

2 What is the quantitative effect of unconventional monetary policy in such a setting?
 • In an environment where standard monetary policy no longer works (the “great escape” from the liquidity trap)
Main results

Output

Inflation

Quarters

percent

percent (annualized)

Del Negro, Ferrero, Eggertsson, Kiyotaki

The Great Escape?

XIV Inflation Targeting Seminar
The model: Kiyotaki-Moore (Shi version)

1. Households = \{ entrepreneurs with probability \(\kappa \): \(j \in [0, \kappa) \),
entrepreneurs (investment opportunity) workers with probability \(1 - \kappa \): \(j \in [\kappa, 1] \) \}

2. Government
The model: Kiyotaki-Moore (Shi version) + a few more actors and a few more rigidities

1 Households = \{ entrepreneurs (investment opportunity) workers \}
 \begin{align*}
 & \text{with probability } \kappa : \quad j \in [0, \kappa) \\
 & \text{with probability } 1 - \kappa : \quad j \in [\kappa, 1]
 \end{align*}

2 Government

3 Intermediate firms \Rightarrow sticky prices

4 Final good producing firms

5 Labor packers \Rightarrow sticky wages

6 Capital producing firms \Rightarrow investment adjustment cost
Households’ Balance Sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal bonds</td>
<td>own equity issued</td>
</tr>
<tr>
<td>(B_{t+1}/P_t)</td>
<td>(q_t N_{t+1}^I)</td>
</tr>
<tr>
<td>equity of other households</td>
<td>net worth</td>
</tr>
<tr>
<td>(q_t N_{t+1}^O)</td>
<td>(q_t N_{t+1}) + (B_{t+1}/P_t)</td>
</tr>
<tr>
<td>capital stock</td>
<td></td>
</tr>
<tr>
<td>(q_t K_{t+1})</td>
<td></td>
</tr>
</tbody>
</table>

where \(N_t \equiv N_{t}^O + (K_t - N_{t}^I) \).
Frictions

- $N_{t+1}(j) \geq (1 - \phi_t)(1 - \delta)N_t + (1 - \theta)L_t(j)$

- $B_{t+1}(j) \geq 0$
Frictions

\[N_{t+1}(j) \geq (1 - \phi_t)(1 - \delta) N_t + (1 - \theta) l_t(j) \]

Borrowing Constraint
Frictions

\[N_{t+1}(j) \geq (1 - \phi_t)(1 - \delta) N_t + (1 - \theta) l_t(j) \]

Resaleability Constraint
Frictions

\[N_{t+1}(j) \geq (1 - \phi_t)(1 - \delta) N_t + (1 - \theta) I_t(j) \]

\[B_{t+1}(j) \geq 0 \]
Entrepreneurs & Frictions

\[C(j)_t + p_t^l I(j)_t + q_t(N(j)_{t+1} - I(j)_t) + \frac{B(j)_{t+1}}{P_t} = (r^K_t + \lambda)N_t \]
\[+ \frac{R_{t-1}B_t}{P_t} + \tau_t + D_t + D^l_t \]
Entrepreneurs & Frictions

\[C(j)_t + p_t^l I(j)_t + q_t (N(j)_{t+1} - I(j)_t) + \frac{B(j)_{t+1}}{P_t} = (r^K_t + \lambda)N_t \]

\[+ \frac{R_{t-1}B_t}{P_t} + \tau_t + D_t + D^l_t \]
Entrepreneurs & Frictions

\[C(j)_t + p_t I(j)_t + q_t (N(j)_{t+1} - l(j)_t) + \frac{B(j)_{t+1}}{P_t} = (r^K_t + \lambda)N_t \]
\[+ \frac{R_{t-1}B_t}{P_t} + \tau_t + D_t + D^l_t \]

- \(N_{t+1}(j) \geq (1 - \theta)l_t(j) + (1 - \phi_t)(1 - \delta)N_t \)
- \(B_{t+1}(j) \geq 0 \)
Entrepreneurs & Frictions

\[
C(j)_t + p_t^l l(j)_t + q_t(N(j)_{t+1} - I(j)_t) + \frac{B(j)_{t+1}}{P_t} = (r^K_t + \lambda)N_t
\]
\[
+ \frac{R_{t-1}B_t}{P_t} + \tau_t + D_t + D^l_t
\]

- \(N_{t+1}(j) \geq (1 - \theta)l_t(j) + (1 - \phi_t)(1 - \delta)N_t \)
- \(B_{t+1}(j) \geq 0 \)
- Solution:

\[
l(j)_t = \frac{(r^K_t + \lambda \phi_t q_t)N_t + \frac{R_{t-1}B_t}{P_t} + D_t + D^l_t}{p_t^l - \theta_t q_t}
\]
Households’ FOCs

- **Euler:**

\[
C_t^{-\sigma} = \beta \mathbb{E}_t \left\{ C_{t+1}^{-\sigma} \left[\frac{R_t}{\pi_{t+1}} + \frac{\kappa(q_{t+1} - p_{t+1}^l)}{\pi_{t+1} - \theta q_{t+1}} \frac{R_t}{\pi_{t+1}} \right] \right\}
\]

- **Arbitrage:**

\[
E_t \left[C_{t+1}^{-\sigma} \left\{ \frac{R_t}{\pi_{t+1}} (1 + \frac{\kappa(q_{t+1} - p_{t+1}^l)}{p_{t+1}^l - \theta_{t+1} q_{t+1}}) \frac{r_{t+1}^K + \lambda q_{t+1}}{q_t} \frac{1}{q_t} \frac{1 + \frac{\kappa(q_{t+1} - p_{t+1}^l)}{p_{t+1}^l - \theta_{t+1} q_{t+1}} \frac{r_{t+1}^K + \lambda \phi_{t+1} q_{t+1}}{r_{t+1}^K + \lambda q_{t+1}}} \right] \right\} = 0
\]
The Role of Nominal Rigidities

\[y_t = i_t [1 + S\left(\frac{i_t}{i^*}\right)] + C_t \]
The Role of Nominal Rigidities

\[y_t = i_t [1 + S\left(\frac{i_t}{i_*} \right)] + C_t \]
Government

• Taylor rule:

\[R_t = \max\{ R_\star (\pi_t / \pi_\star)^{\psi_1}, 0 \} \]

• Unconventional monetary policy (liquidity provision):

\[\frac{N_{t+1}^g}{K} = \psi_k \left(\frac{\phi_t}{\phi} - 1 \right) \]
Government

• Taylor rule:

\[R_t = \max\{R_*(\pi_t/\pi_*)^{\psi_1}, 0\} \]

• Unconventional monetary policy (liquidity provision):

\[\frac{N_{t+1}^g}{K} = \psi_k \left(\frac{\phi_t}{\phi} - 1 \right) \]

• **Chicken**: Gvmt intervenes on the open market (does not relax individual agents constraints) ... but does have the power to issue liquid assets.
Liquidity Share: \(\frac{L}{L+qK} \)
Steady State as a Function of ϕ_*

(for $L_*/Y_* = .40$)
Calibration

- Impose $\phi = \theta = 18.5\%$ to obtain:
 1. steady state liquidity share of 13%
 2. real return on liquid assets of 2.2\% (1952Q1:2008Q4)

- Probability of receiving investment opportunity: $\kappa = 5\%$

Doms and Dunne (1998) and Cooper, Haltiwanger and Power (1999)

- Nominal rigidities: $\zeta_p = \zeta_w = .75$
- Discount factor: $\beta = 0.99$
- Intertemporal elasticity: $\sigma = 1$
- Inverse Frisch elasticity: $\nu = 1$
- Investment adjustment costs: $S''(1) = 1$
- Depreciation rate: $\delta = 0.025$ (Annual depreciation = 10\%), $\lambda_p = \lambda_w = 0.1$
- Capital share: $\gamma = 0.4$
- Taylor rule response to inflation: $\psi_1 = 1.5$, Transfer rule coef $\xi_\tau = 0.1$
Response of Key Macro Variables

Model (with intervention) and Data

- **Output**: Graph showing the response of output over time.
- **Inflation**: Graph showing the response of inflation over time.
- **Nominal Interest Rate**: Graph showing the response of nominal interest rate over time.

Each graph is labeled with the corresponding variable (Output, Inflation, Nominal Interest Rate) and includes a time series from 2006 to 2009, with specific data points highlighted for years 2008 and 2009.
Response of Financial Variables

Spread Illiquid–Liquid Assets

Value of Capital

annualized bps.

percent

Del Negro, Ferrero, Eggertsson, Kiyotaki The Great Escape? XIV Inflation Targeting Seminar 16 / 21
The Effect of Policy Intervention

![Graph showing the effect of policy intervention on Output and Inflation over quarters.](image-url)
The Great Escape?

Inflation

Output

percent (annualized)

Quarters

percent

−50
−40
−30
−20
−10
0
The Role of the Nominal Rigidities

Output

Investment

Consumption

Real Interest Rate

Quarters

percent

percent

percent

percent (annualized)

%
The Role of the Zero Bound
Conclusions

1. Liquidity shocks as in Kiyotaki-Moore model can generate quantitatively large movements in real and financial variables → can explain some features of the crisis.

2. Swap of liquid for illiquid assets (unconventional policy) is effective in reducing impact on spreads and real variables
 - How much should the central bank intervene via unconventional policy?
 - “Great escape” or “Great moral hazard”?

• Caveat: This is not a model for normative analysis!!!