The Maturity Structure of Debt, Monetary Policy and Expectations Stabilization

Stefano Eusepi
Federal Reserve Bank of New York

Bruce Preston
Columbia University and ANU

The views expressed are those of the authors and are not necessarily reflective of views at the Federal Reserve Bank of New York or the Federal Reserve System
Motivation

- ‘Standard’ view of monetary policy
 - Monetary authority alone determines inflation
 - Fiscal authority guarantees intertemporal solvency of the government
 - Timing, size and composition of government liabilities...
 - ...have no impact on inflation
 - Expectations are ‘anchored’: consistent with central bank’s objectives
Motivation

- Current global environment: concerns over fiscal imbalances and their effects on economic outlook

 - Large fiscal obligations: fiscal limits?

 - Uncertainty about monetary and fiscal adjustments, and economic recovery

 - Anchored expectations?
What we do

- Simple model where both monetary and fiscal policy affect inflation

- Key ingredient:
 - Agents have an incomplete knowledge about the economy: learning
 - Implication: fiscal policy affects inflation dynamics

- Explore how expectations dynamics is affected by fiscal policy
 - Specifically: scale and composition of government debt
This Talk

- Simple NK model of output gap and inflation determination
- Learning and the stability of expectations
- Economic dynamics: response to a monetary contraction
Model

- No capital, constant government spending

- Sticky prices: output is demand-determined

- Forward-looking agents

- Learning

- Simple policy rules
Model

- No capital, constant government spending

- **Sticky prices: output is demand-determined**

- Forward-looking agents

- Learning

- Simple policy rules
Model

- No capital, constant government spending
- Sticky prices: output is demand-determined

- **Forward-looking agents**
- Learning
- Simple policy rules
Model

- No capital, constant government spending

- Sticky prices: output is demand-determined

- Forward-looking agents

- Learning

- Simple policy rules
Model

- No capital, constant government spending
- Sticky prices: output is demand-determined
- Forward-looking agents
- Learning

- Simple policy rules
Public Debt

- Issues two kinds of debt
 - B_t^s: One period debt in zero net supply with price $P_t^s = (1 + i_t)^{-1}$
 - B_t^m: An asset in positive supply that has the payoff structure

 $$\rho^{T-(t+1)} \text{ for } T \geq t + 1$$

- P_t^m denotes the price of this second asset.

- Duration of the debt is $(1 - \beta \rho)^{-1}; \beta$ discount rate
Monetary and Fiscal Authorities

- Flow budget constraint

\[P_t^m B_t^m = B_{t-1}^m (1 + \rho P_t^m) - P_t S_t \]

- Fiscal policy maintains intertemporal solvency (‘Passive’)

\[S_t = \bar{S} \left(\frac{B_{t-1}^m}{B^m} \right)^{\tau_l} \varepsilon_{\tau, t}; \quad 1 < \tau_l < \frac{1 + \beta}{1 - \beta} \]

- Monetary policy controls inflation (‘Active’)

\[\frac{1 + i_t}{1 + \bar{r}} = \left(\frac{\pi_t}{\pi^*} \right)^{\phi_{\pi}} \left(\frac{Y_t}{\bar{Y}} \right)^{\phi_y} \varepsilon_{i, t}; \quad \phi_{\pi} > 1 \]

- Under rational expectations: standard account of monetary policy
Key Equation 1: Aggregate Consumption

- Households’ consumption decisions:

\[\hat{C}_t = \]

\[\bar{s}_C^{-1} \left(\frac{\bar{s}}{\bar{Y}} \right) \left(\hat{b}_{t-1}^m - \hat{\pi}_t + \rho \beta \hat{P}_t^m - \hat{E}_t \sum_{T=t}^{\infty} \beta^{T-t} \left[(1 - \beta) \hat{s}_T - \beta (\hat{i}_T - \hat{\pi}_{T+1}) \right] \right) \]

\[+ \bar{s}_C^{-1} (1 - \beta) \hat{E}_t \sum_{T=t}^{\infty} \beta^{T-t} x_T - \beta \sigma^{-1} \hat{E}_t \sum_{T=t}^{\infty} \beta^{T-t} (\hat{i}_T - \hat{\pi}_{T+1}) \]

- \(x_T \) denotes income from wages and profits.
Key equation 2: Public Debt

- Price of government debt (Expectations Hypothesis)

\[\hat{P}^m_t = -\hat{E}_t \sum_{T=t}^{\infty} (\rho \beta)^{T-t} \hat{i}_T \]

- Evolution of public Debt

\[\hat{b}^m_t = \beta^{-1} \hat{b}^m_{t-1} - \beta^{-1} \hat{\pi}_t + (1 - \rho) \hat{i}_t - (\beta^{-1} - 1) \hat{s}_t \]

\[+ (1 - \rho) \rho \beta \hat{E}_t \sum_{T=t}^{\infty} (\rho \beta)^{T-t} \hat{i}_{T+1} \]
Expectations

- Rational Expectations (RE)

\[\hat{E}_t^{RE} \pi_{T+1} = \Omega^{RE} \hat{A}_{t-1}, \text{ where } T > t \]

- \(\hat{A}_{t-1} \) : exogenous shocks

- Learning

\[\hat{E}_t \pi_{T+1} = \Omega^{L}_{c,t-1} + \Omega^{L}_{A,t-1} \hat{A}_{t-1} + \Omega^{L}_{b,t-1} \hat{b}_m^{t-1} + \ldots, \]

- Larger forecasting model
- Debt can affect expectations
- Coefficients updated every period (agents use an econometric model)
Fiscal Policy Matters

- Households intertemporal budget constraint: provided $\frac{S}{Y} > 0$

- Outside RE, agents’ expectations can depend on government debt

- The evolution of public debt depends on expectations about monetary policy
Expectational Stability

- Does learning converge to RE?

- What is the role of fiscal policy?
Figure 1: Stability of expectations.
Intuition: Increase in Inflation Expectations

- Anchored fiscal expectations

\[
\hat{C}_t =
\]

\[
+ \bar{s}_{C}^{-1} (1 - \beta) \hat{E}_t \sum_{T=t}^{\infty} \beta^{T-t} x_T - \beta \sigma^{-1} \hat{E}_t \sum_{T=t}^{\infty} \beta^{T-t} (\phi_{\pi} \hat{\pi}_T - \hat{\pi}_{T+1})
\]

we have substituted for the bond price equation and the monetary policy rule,

\[
\hat{i}_t = \phi_{\pi} \hat{\pi}_t
\]
Intuition: Increase in Inflation Expectations

- Baseline

\[
\hat{C}_t = \bar{s}_C^{-1} \left(\frac{\bar{S}}{\bar{Y}} \right) \hat{b}_{t-1}^m \\
\]

\[+ \bar{s}_C^{-1} (1 - \beta) \hat{E}_t^i \sum_{T=t}^{\infty} \beta^{T-t} [x_T - s_T \hat{\nu}_T] - \beta \sigma^{-1} \hat{E}_t^i \sum_{T=t}^{\infty} \beta^{T-t} (\phi_\pi \hat{\nu}_T - \hat{\nu}_{T+1})
\]

\[+ \bar{s}_C^{-1} \left(\frac{\bar{S}}{\bar{Y}} \right) \hat{E}_t \sum_{T=t}^{\infty} \left[\beta^{T-t} (\beta \phi_\pi - 1) \hat{\nu}_T - \beta \rho (\beta \rho)^{T-t} (\phi_\pi \hat{\nu}_T) \right].
\]

- we have substituted for the bond price equation and the monetary policy rule,
\[
\hat{\nu}_t = \phi_\pi \hat{\nu}_t
\]
Intuition: Increase in Inflation Expectations

- Using the bond price equation and the monetary policy rule, \(\hat{i_t} = \phi_{\pi}\hat{\pi}_t \),

\[
\hat{b}_t^m = \beta^{-1}\hat{b}_{t-1}^m - \beta^{-1}\hat{\pi}_t + (1 - \rho)\phi_{\pi}\hat{\pi}_t - (\beta^{-1} - 1)\hat{s}_t \\
\quad + (1 - \rho)\rho\hat{\beta}E_t\sum_{T=t}^{\infty}(\rho\beta)^{T-t}\phi_{\pi}\hat{\pi}_{T+1}
\]

- \(\rho = 0 \) or \(\rho = 1 \) deliver stable expectations.
Intuition: Increase in Inflation Expectations

- Using the bond price equation and the monetary policy rule, $\hat{\pi}_t = \phi_\pi \hat{\pi}_t$,

$$\hat{b}_t = \beta^{-1} \hat{b}_{t-1} - \beta^{-1} \hat{\pi}_t + (1 - \rho) \phi_\pi \hat{\pi}_t - (\beta^{-1} - 1) \hat{s}_t$$

$$+ (1 - \rho) \rho \beta \hat{E}_t \sum_{T=t}^{\infty} (\rho \beta)^{T-t} \phi_\pi \hat{\pi}_{T+1}$$

- $\rho = 0$ or $\rho = 1$ deliver stable expectations.
Dynamics

- Impulse response to a monetary contraction

- Compare baseline model with

 - Anchored fiscal expectations

 - Short term bonds only ($\rho = 0$)

 - Rational Expectations
Dynamics

- Consider impulse response to a i.i.d. monetary policy shock

- Calibration
 - MP parameters: $\phi_\pi = 1.5; \phi_y = 0.5/4$;
 - FP parameters: $\tilde{B}/4\tilde{Y} = 0.7$; ρ implies 5 years average duration of debt
 - Source of fluctuations: technology shock
 - Learning: discounted least squares
Figure 2: Impulse response to a 1% interest rate increase: Inflation.
Figure 3: Impulse response to a 1% interest rate increase: Output.
Conclusion

- Fiscal policy can have important effects on expectations dynamics
 - Fundamentally changes the nature of household and firm responses to shocks
 - Alters the effects of monetary policy

- Monetary policy design should not ignore fiscal policy

- Key role of communication from both Central banks and Fiscal Authorities