Samba: Stochastic Analytical Model with a Bayesian Approach

DSGE Model Project for Brazil’s economy

Working in Progress - Preliminary results

DSGE team: Solange Gouvea, André Minella, Rafael Santos, Nelson Souza-Sobrinho, and Tomiê Sugahara

Banco Central do Brasil – Research Department
X Seminar on Inflation Targeting
August 4th, 2008
Outline

- Introduction
- Model
- Estimation results
- Challenges and next steps
Purposes of the project

- Provide the Banco Central do Brasil with a Dynamic Stochastic General Equilibrium (DSGE) model to be used as a tool for:
 - policy analysis
 * framework for policy discussions; qualitative and quantitative assessment of shock effects, monetary policy decisions and different scenarios, etc.
 - medium-term forecast

- “All models are wrong! Some are useful” George Box

- Models and judgement are complements, not substitutes
Model features

• Microfounded model developed for the inflation targeting period (started in mid-1999)

• Small open economy model

• Aggregate demand \((C + I + G + X - M)\):

 – Households \(\rightarrow\) private consumption and investment

 – Firms \(\rightarrow\) import demand

 – Government \(\rightarrow\) government consumption

 – Rest of the world \(\rightarrow\) export demand
Model features

- Supply side (Y)
 - Competitive firms -> assemble differentiated goods supplied by monopolistic competitive firms and sell them in
 * Local markets (domestic consumption and investment goods)
 * Abroad (export goods)
 - Monopolistic competitive firms -> production of differentiated goods
 * Inputs: labor, capital services, and imports
 * Price rigidity (à la Calvo) with forward- and backward-looking behavior (Galí and Gertler, 1999)
Model features

- Government:
 - Monetary policy: Taylor rule
 - Fiscal policy rule

- Rest-of-the-world variables: interest rate, inflation, world imports, and foreign investors’ "risk aversion".
Main loglinear equations

- **Aggregate Demand: Consumption**

 - Optimizing households
 \[
 c_t^o = \left(\frac{1}{1 + h} \right) E_t (c_{t+1}^o) + \left(\frac{h}{1 + h} \right) c_{t-1}^o - \frac{1}{\sigma} \left(\frac{1 - h}{1 + h} \right) E_t (r_t - \pi_{t+1}) + \ldots + \frac{1}{\sigma} \left(\frac{1 - h}{1 + h} \right) (1 - \rho_c) z_t^c
 \]

 - Rule-of-thumb households
 \[
 c_t^{rot} = w_t^r + n_t^{rot}
 \]

 - Aggregate consumption
 \[
 c_t = (1 - \varpi_c) c_t^o + \varpi_c c_t^{rot}
 \]

 r_t - interest rate; π_t - inflation; z_t^c - shock to consumption; w_t^r - real wages; n_t^{rot} - employment
• **Aggregate Demand:** Investment:

\[i_t = \frac{1}{\delta_s (1 + \beta)} q_t^I + \frac{\beta}{1 + \beta} E_t i_{t+1} + \frac{1}{1 + \beta} i_{t-1} + \left(\frac{1 - \rho I^\beta}{1 + \beta} \right) z_t^I \]

Shadow price of capital

\[q_t^I = E_t \left\{ \beta (1 - \delta) q_{t+1}^I + (1 - \beta(1 - \delta)) \hat{r}_t^k - (r_t - \pi_{t+1}) \right\} \]

• **Aggregate Demand:** Net Exports

 - Exports

\[x_t = m_t^* + \kappa q_t \]

 - Imports

\[m_t = y_t - \rho (q_t - m_{ct}) \]

\(\hat{r}_t^k \) - rental rate of capital; \(z_t^I \) - shock to investment; \(m_t^* \) - world imports; \(q_t \) - real exchange rate; \(y_t \) - (gross) output; \(m_{ct} \) - real marginal cost
- **Aggregate Supply**

 - Production function

\[
y_t = f(k_t, u_t, n_t, m_t, a_t)
\]

 - Labor market

 * Labor supply

\[
n_t = (1 - \varpi_n) n_t^o + \varpi_n n_t^{rot}
\]

 * Labor demand

\[
n_t = y_t - [(1 - \varrho) + \varrho s_d] a_t - [\alpha + \varrho (1 + s_d) (1 - \alpha)] w_t^r +
+ \alpha [1 - \varrho (1 - s_d)] r_t^k + \varrho (1 - s_d) q_t
\]

 \(k_t\) - physical capital; \(u_t\) - rate of capital utilization; \(a_t\) - productivity shock
- Capital services

* Demand

\[k_t + u_t = y_t - [(1 - \varrho (1 - s_d)] a_t - [(1 - \alpha) + \alpha \varrho (1 - s_d)] \hat{r}_t^k + ... + (1 - \alpha) [(1 - \varrho (1 - s_d)] w_t^r + \varrho (1 - s_d) q_t \]

* Supply

\[u_t = \frac{1}{\delta_\alpha} \hat{r}_t^k \]

* Law of motion for capital

\[k_{t+1} = (1 - \delta) k_t + \left(\frac{I}{K} \right) i_t \]
- Phillips curve

\[\pi_t = \lambda m c_t + \lambda_b \pi_{t-1} + \lambda_f E_t \pi_{t+1} \]

where:

\[m c_t = s_d \left(\alpha \hat{r}^k_t + (1 - \alpha) w^r_t - a_t \right) + (1 - s_d) q_t \]

\[(\lambda, \lambda_b, \lambda_f) = f (\theta, \varpi_b, \beta) \]
• Financial variables

- Real exchange rate (UIP)

\[q_t = E_t q_{t+1} - \left[(r_t - E_t \pi_{t+1}) - (r_t^* + \phi_t - E_t \pi_t^*_{t+1}) \right] \]

- Country-risk premium

\[\phi_t = -\psi b^y_{t+1} + \nu z^\phi_t + z^\phi_t \]

\(r_t^* \) - world interest rate; \(\pi_t^* \) - world inflation;
\(z^\phi_t \) - international investors’ risk averstion; \(z^\phi_t \) - shock to country-risk premium
• Government

 – Monetary policy (Taylor rule)

 \[r_t = \gamma_r r_{t-1} + (1 - \gamma_r) \left[\gamma_\pi E_t (\pi_{t+1} - \bar{\pi}_{t+1}) + \bar{\pi}_t + \gamma_y y_t^{VA} \right] + z^r_t \]

 – Fiscal policy rule

 \[g^y_t = \gamma_g g^y_{t-1} + (1 - \gamma_g) \left(\gamma_s \tilde{s}^y_{t-1} - \gamma_b b^y_{t} \right) + z^g_t \]

 \(\bar{\pi}_t \) - inflation target; \(z^r_t \) - shock to monetary policy;

 \(g^y_t \) - government consumption-to-GDP ratio; \(\tilde{s}^y_t \) - primary fiscal surplus target;

 \(z^g_t \) - shock to fiscal policy; \(\tilde{s}^y_{t-1} \) - primary fiscal surplus deviation from the target
• **Shocks and rest-of-the-world variables:**

\[z_t = \rho z_{t-1} + \varepsilon_t \]

• **Value added (GDP) - Equilibrium:**

\[y_t^{VA} = s_{cc} c_t + s_{i} i_t + s_{gg} g_t + s_{xx} x_t - s_{mm} m_t \]
Estimation technique

- Bayesian estimation:

Estimated parameter distribution = prior distribution + likelihood information from the data

It is a bridge between calibration and maximum likelihood

Results: Model + Data + Priors
Estimation

- Sample period: 1999Q2 to 2008Q1 (36 obs)

- Data: 25 series:

- Data treatment: HP filter

- Number of model parameters: 58
 - 41 estimated: 17 structural parameters and 24 shock parameters
 - 17 calibrated: 3 structural parameters and 14 steady-state relationships
Posteriors distributions for selected parameters

- **h**
- **θ**
- **γπ**
Impulse responses to a consumption shock
Impulse responses to a monetary policy shock
Impulse responses to a world GDP shock
Challenges

• Common to DSGE models and their estimation:

 – Generation of slower and more persistent dynamics (enough propagation mechanisms, lags in the transmission mechanisms, etc.)

 – Identification of the main model channels in place

 – Large number of parameters to be estimated – calibration versus estimation
Challenges

- Brazilian economic features:
 - Small sample size
 - Specific features: administered prices
 - Large changes in some ratios over the sample (ex.: net external debt-to-GDP ratio)
Next steps

● Refining model setup:
 – Add nominal and real rigidities: wage rigidity, price rigidity in the import and export sectors, firm-specific capital
 – Disaggregate CPI inflation into administered and non-administered prices

● New estimation and model implementation
Thank you for your attention!