Samba: Stochastic Analytical Model with a Bayesian Approach

DSGE Model Project for Brazil's economy

Working in Progress - Preliminary results

DSGE team: Solange Gouvea, André Minella, Rafael Santos, Nelson Souza-Sobrinho, and Tomiê Sugahara

Banco Central do Brasil – Research Department
X Seminar on Inflation Targeting
August 4th, 2008

Outline

Introduction

Model

• Estimation results

• Challenges and next steps

Purposes of the project

- Provide the Banco Central do Brasil with a Dynamic Stochastic General Equilibrium (DSGE) model to be used as a tool for:
 - policy analysis
 - * framework for policy discussions; qualitative and quantitative assessment of shock effects, monetary policy decisions and different scenarios, etc.
 - medium-term forecast
- "All models are wrong! Some are useful" George Box
- Models and judgement are complements, not substitutes

Model features

 Microfounded model developed for the inflation targeting period (started in mid-1999)

- Small open economy model
- Aggregate demand (C + I + G + X M):
 - Households -> private consumption and investment
 - Firms -> import demand
 - Government -> government consumption
 - Rest of the world -> export demand

Model features

- Supply side (Y)
 - Competitive firms -> assemble differentiated goods supplied by monopolistic competitive firms and sell them in
 - * Local markets (domestic consumption and investment goods)
 - * Abroad (export goods)
 - Monopolistic competitive firms -> production of differentiated goods
 - * Inputs: labor, capital services, and imports
 - * Price rigidity (à la Calvo) with forward- and backward-looking behavior (Galí and Gertler, 1999)

Model features

- Government:
 - Monetary policy: Taylor rule
 - Fiscal policy rule
- Rest-of-the-world variables: interest rate, inflation, world imports, and foreign investors' "risk aversion".

Main loglinear equations

- Aggregate Demand: Consumption
 - Optimizing households

$$c_t^o = \left(\frac{1}{1+h}\right) E_t \left(c_{t+1}^o\right) + \left(\frac{h}{1+h}\right) c_{t-1}^o - \frac{1}{\sigma} \left(\frac{1-h}{1+h}\right) E_t \left(r_t - \pi_{t+1}\right) + \dots + \frac{1}{\sigma} \left(\frac{1-h}{1+h}\right) (1-\rho_c) z_t^c$$

Rule-of-thumb households

$$c_t^{rot} = w_t^r + n_t^{rot}$$

Aggregate consumption

$$c_t = (1 - \varpi_c) c_t^o + \varpi_c c_t^{rot}$$

 r_t - interest rate; π_t - inflation; z_t^c - shock to consumption; w_t^r - real wages; n_t^{rot} - employment

• Aggregate Demand: Investment:

$$i_{t} = \frac{1}{\delta_{s} (1+\beta)} q_{t}^{I} + \frac{\beta}{1+\beta} E_{t} i_{t+1} + \frac{1}{1+\beta} i_{t-1} + \left(\frac{1-\rho_{I}\beta}{1+\beta}\right) z_{t}^{I}$$

Shadow price of capital

$$q_t^I = E_t \left\{ \beta \left(1 - \delta \right) q_{t+1}^I + \left(1 - \beta (1 - \delta) \right) \hat{r}_{t+1}^k - \left(r_t - \pi_{t+1} \right) \right\}$$

- Aggregate Demand: Net Exports
 - Exports

$$x_t = m_t^* + \varkappa q_t$$

Imports

$$m_t = y_t - \varrho \left(q_t - mc_t \right)$$

 \hat{r}_t^k - rental rate of capital; z_t^I - shock to investment; m_t^* - world imports; q_t - real exchange rate; y_t - (gross) output; mc_t - real marginal cost

- Aggregate Supply
 - Production function

$$y_t = f\left(k_t, u_t, n_t, m_t, a_t\right)$$

- Labor market
 - * Labor supply

$$n_t = (1 - \varpi_n) n_t^o + \varpi_n n_t^{rot}$$

* Labor demand

$$n_t = y_t - [(1 - \varrho) + \varrho s_d] a_t - [\alpha + \varrho (1 + s_d) (1 - \alpha)] w_t^r + \alpha [1 - \varrho (1 - s_d)] r_t^k + \varrho (1 - s_d) q_t$$

 k_t - physical capital; u_t - rate of capital utilization; a_t - productivity shock

- Capital services
 - * Demand

$$k_t + u_t = y_t - [(1 - \varrho(1 - s_d)] a_t - [(1 - \alpha) + \alpha \varrho(1 - s_d)] \hat{r}_t^k + \dots + (1 - \alpha) [(1 - \varrho(1 - s_d)] w_t^r + \varrho(1 - s_d) q_t$$

* Supply

$$u_t = \frac{1}{\delta_a} \hat{r}_t^k$$

* Law of motion for capital

$$k_{t+1} = (1 - \delta)k_t + \left(\frac{I}{K}\right)i_t$$

- Phillips curve

$$\pi_t = \lambda m c_t + \lambda_b \pi_{t-1} + \lambda_f E_t \pi_{t+1}$$

where:

$$mc_t = s_d \left[\alpha \hat{r}_t^k + (1 - \alpha) w_t^r - a_t \right] + (1 - s_d) q_t$$

$$(\lambda, \lambda_b, \lambda_f) = f(\theta, \varpi_b, \beta)$$

• Financial variables

Real exchange rate (UIP)

$$q_t = E_t q_{t+1} - \left[\left(r_t - E_t \pi_{t+1} \right) - \left(r_t^* + \phi_t - E_t \pi_{t+1}^* \right) \right]$$

Country-risk premium

$$\phi_t = -\psi b_{t+1}^{y*} + \nu z_t^{\phi^*} + z_t^{\phi}$$

 r_t^* - world interest rate; π_t^* - world inflation;

 $z_t^{\phi^*}$ - international investors' risk averstion; z_t^ϕ - shock to country-risk premium

• Government

Monetary policy (Taylor rule)

$$r_t = \gamma_r r_{t-1} + (1 - \gamma_r) \left[\gamma_{\pi} E_t \left(\pi_{t+1} - \overline{\pi}_{t+1} \right) + \overline{\pi}_t + \gamma_y y_t^{VA} \right] + z_t^r$$

Fiscal policy rule

$$g_t^y = \gamma_g g_{t-1}^y + \left(1 - \gamma_g\right) \left(\gamma_s \hat{s}_{t-1}^y - \gamma_b b_t^y\right) + z_t^g$$

 $\overline{\pi}_t$ - inflation target; z_t^r - shock to monetary policy;

 g_t^y - government consumption-to-GDP ratio; \overline{s}_t^y - primary fiscal surplus target;

 z_t^{g} - shock to fiscal policy; \widehat{s}_{t-1}^{y} - primary fiscal surplus deviation from the target

• Shocks and rest-of-the-world variables:

$$z_t = \rho z_{t-1} + \varepsilon_t$$

• Value added (GDP) - Equilibrium:

$$y_t^{VA} = s_c c_t + s_i i_t + s_g g_t + s_x x_t - s_m m_t$$

Estimation technique

• Bayesian estimation:

Estimated parameter distribution = prior distribution + likelihood information from the data

It is a bridge between calibration and maximum likelihood

Results: Model + Data + Priors

Estimation

• Sample period: 1999Q2 to 2008Q1 (36 obs)

• Data: 25 series:

• Data treatment: HP filter

• Number of model parameters: 58

- 41 estimated: 17 structural parameters and 24 shock parameters

- 17 calibrated: 3 structural parameters and 14 steady-state relationships

Posteriors distributions for selected parameters

Impulse responses to a consumption shock

Impulse responses to a world GDP shock

Challenges

- Common to DSGE models and their estimation:
 - Generation of slower and more persistent dynamics (enough propagation mechanisms, lags in the transmission mechanisms, etc.)
 - Identification of the main model channels in place
 - Large number of parameters to be estimated calibration versus estimation

Challenges

- Brazilian economic features:
 - Small sample size
 - Specific features: administered prices
 - Large changes in some ratios over the sample (ex.: net external debt-to-GDP ratio)

Next steps

- Refining model setup:
 - Add nominal and real rigidities: wage rigidity, price rigidity in the import and export sectors, firm-specific capital
 - Disaggregate CPI inflation into administered and non-administered prices
- New estimation and model implementation

Thank you for your attention!