Comment on Market Discipline and Monetary Policy by Carl Walsh

Maurício S. Bugarin and Fabia A. de Carvalho
April, 2005
Comment on Market Discipline and Monetary Policy
by Carl Walsh*

Maurício S. Bugarin**
Fabia A. de Carvalho***

Abstract

This paper shows that the results Walsh (2000) obtains are highly sensitive to the assumption that different wage contracts are based on different information sets even though they are negotiated simultaneously. In particular, the power of future expectations to discipline an opportunistic central banker is much weaker when homogeneous information sets are used.

Keywords: Monetary policy. Inflation expectations.
JEL Classification: E50, E58

* We are especially grateful to Eduardo Loyo, Ilan Goldfajn, Mirta Bugarin, Stephen de Castro, Marcio Nakane, the participants of the 2003 Latin American Meeting of the Econometric Society, three anonymous referees and the editor for valuable comments and analysis. They are, nonetheless, exempted from any errors or omissions this paper may still present. The views expressed here are those of the authors and not necessarily those of the Central Bank of Brazil.

** Universidade de Brasília. E-mail: bugarin@unb.br

*** Banco Central do Brasil and Universidade de Brasília. E-mail: fabia.carvalho@bcb.gov.br
1. Introduction

In a recent article in this journal, Carl E. Walsh (2000) extends the monetary game theoretic model in Cukierman and Liviatan (1991) to show that the mix of short- and long-term wage contracts in an economy that features a Lucas-type supply function has effects on optimal inflation choices that are not captured in uniform wage setting models. Walsh shows that in an incomplete information context where some central bankers can commit but others cannot, the introduction of forward-looking inflation expectations acts as a disciplinary device, reducing the inflationary bias\(^1\) and forcing the weaker type to postpone inflationary surprises. In this framework, strong types make inflation choices so as to accommodate adverse expectations and in some cases they manage to prevent the economy from undergoing recession, a result that was firstly due to Cukierman and Liviatan (1991).

Several results highlighted in Walsh are sensitive to an implicit assumption that different sectors in the economy have different information sets. In his model, wage setters that negotiate short-term nominal contracts base their decisions on past expectations of current inflation, following Barro and Gordon (1983). On the other hand, wage setters negotiating long-term contracts know current inflation and thus base their contracts on current expectations of future inflation, following Taylor (1979) and Calvo (1983).

Under homogenous information sets, the inflationary bias is higher. Inflation persistence endogenously affects the output gap, in spite of the assumption that expectations are forward looking, and past expectations of current inflation are still more important than future expectations. As a result, the channel for the market to discipline the central banker predicted in Walsh (2000) will generally not operate.

The predictions for economic growth under discretion or commitment are also different. Under commitment, for instance, a strong type central banker is sometimes able to generate economic expansion in the second period of a pooling equilibrium.

The paper is organized as follows. Section 2 discusses the expectations setting in Walsh and proposes an alternative framework. Section 3 presents the new optimal choices of inflation and the predictions for the output gap under the separating and pooling equilibria. Finally, the last section concludes the paper.
2. Changing the Expectations Setting

The reader is referred to Walsh (2000) for the basic set up. There are two types of contracts. Contracts of type A are signed every period. Type B long-term contracts are signed every other period, and are divided into types B1 and B2, differing only on the time they are negotiated. As in Walsh (2000), at the beginning of period t, type A contracts are negotiated based on past expectations of current inflation, and, hence their information set is $[I_{t-1}]$. Type B1 contracts are also negotiated at the beginning of period t, but distinctly from Walsh we assume that they are based on past expectations of current and future inflation. Therefore, the present value of the expected real wage in logs, in sector B1, yields $w_{t}^{B1} - E_{t-1}p_{t} + \rho(w_{t}^{B1} - E_{t-1}p_{t+1}) = 0$, and the actual real wage in sector B1 is:

$$w_{t}^{B1} - p_{t} = E_{t-1}\pi_{t} - \pi_{t} + \frac{\rho}{1 + \rho} E_{t-1}\pi_{t+1}$$ (14′)

This latter equation differs from the one that appears after equation (14) in Walsh (2000) as he implicitly assumed that B1-type contracts were based on the information set $[I_{t}]$, i.e., based on information available at the end of period t. Sector B1 would thus have better information than sector A, although both signed contracts at the same time.

It does not seem natural to argue that some sectors are able to observe inflation rates before others, as inflation rates are usually public. Even under the assumption that simultaneously signed contracts may have heterogeneous information sets, the choice of which sector should have better information is highly arbitrary. In fact, if Walsh had chosen sector A to have better information than sector B1, there would be no surprise at all in sector A and contracts would display perfect foresight. But then, sector A would not affect the equilibrium of the monetary policy game and should have been removed.

1 This result was also obtained in Goodhart and Huang (1998) with a model that assumed real output persistence, overlapping multi-period wage contracts and monetary policy lags.
2 A counter argument to this point could follow Woodford (2002), who argues that decision-makers may not be fully aware of all information that is made public, which could result in heterogeneous information sets. However, distinctly from Walsh (2000), in Woodford decision-makers act strategically, and high order expectations matter for optimal pricing policy. In that environment, the assumption of limited capacity to filter information generates more sluggish responses of the expectations to shocks, which in turn may cause more persistence of real effects of nominal shocks. In contrast, the heterogeneity of information sets in Walsh (2000) causes less persistence to inflation surprises in the model.
Therefore, in order to make the informational structure homogeneous among sectors that sign contracts at the same time, and also nontrivial, we assume that both sectors A and B1 have access to the same information set \([I_{t-1}]\) when they sign their wage contracts.

From \((14')\) the output gap in logs in sector B1 at \(t\) is

\[
y_{t}^{b1} = \frac{a_L}{1-a_L} \left[\left(\pi_t - E_{t-1} \pi_t \right) - \frac{\rho}{1+\rho} E_{t-1} E \pi_{t+1} \right].
\]

Sector B2 negotiates two period contracts at the end of period \(t-2\). In Walsh the information set of wage setters in this sector is \([I_{t-2}]\). Thus, the same argument used above on comparing the expectations setting in sectors A and B1 applies here. Assuming that the information set in B2 is \([I_{t-2}]\), the real wage and the output gap in sector B2 are respectively

\[
w_{t-1}^{b2} - p_t = \left(E_{t-2} \pi_{t-1} - \pi_{t-1} \right) + \left(\frac{\rho}{1+\rho} E_{t-2} E \pi_t - \pi_t \right)
\]

\[
y_t^{b2} = \frac{a_L}{1-a_L} \left[\left(\pi_{t-1} - E_{t-2} \pi_{t-1} \right) + \pi_t - \frac{\rho}{1+\rho} E_{t-2} E \pi_t \right].
\]

Hence, the output gap in the economy at time \(t\) is\(^3\):

\[
y_t = \bar{a} \left[\frac{1-\gamma}{2} \left(\pi_{t-1} - E_{t-2} \pi_{t-1} \right) + \pi_t - \frac{1+\gamma}{2} E_{t-2} E \pi_t - \frac{1-\gamma}{2} \rho E_{t-2} E \pi_t \right]
\]

where \(\bar{a} = \frac{a_L}{1-a_L}\) and \(\bar{\rho} = \frac{\rho}{1+\rho}\). This equation differs from equation (16) in Walsh mainly due to the persistence of inflation (if not perfectly anticipated) affecting the current output gap. That result is consistent with the inheritance of rigidity from past wage negotiations. In addition, the parameter \(\bar{a}\), which impacts multiplicatively the output deviation from its equilibrium level in both periods, does not depend on the share of sector A, \(\gamma\), in the total number of firms.

Walsh draws important conclusions from the output gap equation. Some of these conclusions, however, do not hold when contracts that are signed at the same time are based on the same information sets. For instance, Walsh argues that, when all contracts last for two periods (i.e. \(\gamma=0\)), “expectations of future inflation and past expectations of current inflation will be equally important”. With homogeneous information sets, past expectations of current

\(^3\) All derivations can be obtained from the authors upon request.
inflation are almost three times more important than future expectations. Therefore, one might expect that the channel for the market to discipline the central banker will not work as well as described in Walsh (2000). We turn to that point next.

3. New Equilibrium Results

We replicate Walsh (2000)’s strategic interaction between society and the central bank. By using the new output gap equations, we find that the optimal inflation rates, the corresponding sizes of the output gap, and the influence of the heterogeneity of contracts in central bank’s decisions are quite different. Although some of the differences follow from the presence of an inertial component in the output gap equation that does not exist in Walsh’s model, others alter what we consider to be the core of that paper: how the expectations channel can discipline an opportunistic central banker.

Table 1 compares the optimal inflation rates and the influence of the heterogeneity of contracts in the optimal decisions. The main differences are briefly discussed below.

3.1 The impact of multi-period contracts in discretionary inflation rates

The heterogeneity of contracts is expressed in the model by the variable \(\gamma \): a higher \(\gamma \) implies a higher share of short-term contracts in the economy. Walsh (2000) argues that “a smaller \(\gamma \) reduces the incentives to inflate and lowers the inflationary bias under discretion”. This result suggests that an economy with longer-term contracts would systematically exhibit lower inflation rates under discretion. Contrary to Walsh (2000), it can be seen from Table 1 that, in the revised model, 1) the discretionary inflation rate at \(t+1 \) is not affected by \(\gamma \) and 2) discretionary inflation at \(t \) lowers as the share of short-term contracts increases.

3.2 The impact of multi-period contracts in announced inflation rates

A higher share of long-term contracts in the economy generally increases inflation under commitment. The one exception is the second period of a pooling equilibrium, when \(\gamma \) has no effect in optimal inflation announcements, which also contrasts with Walsh.

\[4 \text{ If } \gamma=0 \text{ and } \rho \text{ is close to 1, then } \hat{\rho} \text{ is close to } 1/2 \text{ and past expectations of current inflation are approximately } \frac{1}{2} E_{t+1} \pi_t + \frac{1}{4} E_{t+2} \pi_t, \text{ whereas expectations of future inflation are close to } \frac{1}{4} E_{t+3} \pi_{t+1}. \]
Table 1
Compared Results of the Models: Sign of Inflation Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Walsh (2000)</th>
<th>Revised expectations setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\pi_{i+1}^w = \frac{\alpha}{\beta} > 0)</td>
<td>(\pi_{i+1}^w = \frac{\bar{\alpha}}{\beta} > 0)</td>
</tr>
<tr>
<td></td>
<td>(\frac{\partial \pi_{i+1}^w}{\partial \gamma} > 0)</td>
<td>(\frac{\partial \pi_{i+1}^w}{\partial \gamma} = 0)</td>
</tr>
<tr>
<td></td>
<td>(\pi_i^w = \frac{\alpha}{\beta} \geq \pi_{i+1}^w > 0)</td>
<td>(\pi_i^w = \frac{\bar{\alpha}}{\beta} \left(1 + \left(\frac{1-\gamma}{2} \right)^\rho \right) > \pi_{i+1}^w)</td>
</tr>
<tr>
<td></td>
<td>(\frac{\partial \pi_i^w}{\partial \gamma} > 0)</td>
<td>(\frac{\partial \pi_i^w}{\partial \gamma} < 0)</td>
</tr>
<tr>
<td></td>
<td>(\pi_i^a = \frac{\alpha}{\beta} [1 - (1 - k)q] < \pi_i^w)</td>
<td>(\pi_i^a = \frac{\bar{\alpha}}{\beta} \left(1 - \frac{1 + \gamma}{2} \right)^\rho \left(1 - q \right) > 0)</td>
</tr>
<tr>
<td></td>
<td>(\frac{\partial \pi_i^a}{\partial \gamma} < 0) if (q < 0.5)</td>
<td>(\frac{\partial \pi_i^a}{\partial \gamma} < 0)</td>
</tr>
<tr>
<td></td>
<td>(\frac{\partial \pi_i^a}{\partial \gamma} > 0) if (q > 0.5)</td>
<td>(\frac{\partial \pi_i^a}{\partial \gamma} < 0)</td>
</tr>
<tr>
<td></td>
<td>(\pi_{i+1}^a = 0)</td>
<td>(\pi_{i+1}^a = \frac{\bar{\alpha}}{\beta} \left(1 - q \right) \left(1 - \frac{1}{2} \right) > 0) (if (\gamma = 1) then (\pi_{i+1}^a = 0))</td>
</tr>
<tr>
<td></td>
<td>(\frac{\partial \pi_{i+1}^a}{\partial \gamma} = 0)</td>
<td>(\frac{\partial \pi_{i+1}^a}{\partial \gamma} < 0)</td>
</tr>
<tr>
<td></td>
<td>(\pi_i = k \frac{\alpha}{\beta} < \pi_i^w) (separating)</td>
<td>(\pi_i^a = \frac{\bar{\alpha}}{\beta} \left(1 - \gamma \right) > 0) (if (\gamma = 1) then (\pi_i^a = 0))</td>
</tr>
<tr>
<td></td>
<td>(\frac{\partial \pi_i^a}{\partial \gamma} < 0)</td>
<td>(\frac{\partial \pi_i^a}{\partial \gamma} < 0)</td>
</tr>
<tr>
<td></td>
<td>(\pi_i^a = \frac{(1 - q)\alpha}{\beta} < \pi_{i+1}^w)</td>
<td>(\pi_i^a = \frac{\bar{\alpha}}{\beta} (1 - q) > 0)</td>
</tr>
<tr>
<td></td>
<td>(\frac{\partial \pi_{i+1}^a}{\partial \gamma} > 0)</td>
<td>(\frac{\partial \pi_{i+1}^a}{\partial \gamma} = 0)</td>
</tr>
</tbody>
</table>

3.3. Size of the inflation bias

Table 2 compares the inflation results in Walsh with those under homogeneous information sets. Inflation is higher with homogeneous information sets.\(^6\)

\(^5\) The superscript \(a\) in the tables stands for "announced".

\(^6\) Of course, when contracts are only short term (\(\gamma = 1\)), the results obtained here are the same as in Walsh, which in turn converge to the standard model of time inconsistency.
Table 2

Compared Results of Equilibrium Inflation

\(a = \) Results with homogeneous information sets \(b = \) Walsh (2000) results

<table>
<thead>
<tr>
<th>Equilibrium</th>
<th>separating</th>
<th>pooling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\pi_t^w)</td>
<td>(\pi_{t+1}^w)</td>
</tr>
<tr>
<td>(a-b (\gamma<1))</td>
<td>> 0</td>
<td>> 0</td>
</tr>
</tbody>
</table>

3.4. Output gap predictions

The predictions for economic growth with homogeneous information sets are not as straightforward as those in Walsh (2000). As Table 3 shows, because of the inertial component in the output gap equation, the sign of the output gap may depend on the type of the previous central banker.

Table 3

New signs for the output gap (0<\(\gamma\)<1, 0<\(q\)<1, \(\rho = 0.9\))

<table>
<thead>
<tr>
<th>Equilibrium</th>
<th>Central banker’s type</th>
<th>Time</th>
<th>Sign of the output gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separating Equilibrium</td>
<td>S</td>
<td>(t)</td>
<td>(\pi_t^w) <0 unless (q = 0.1) or (0.9 \leq \gamma \leq 0.2)</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>(t)</td>
<td>>0</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>(t+1)</td>
<td><0</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>(t+1)</td>
<td>>0 unless (\gamma = 0.1, q \leq 0.2) or (\gamma \in [0.2,0.5], q = 0.1)</td>
</tr>
<tr>
<td>Pooling Equilibrium</td>
<td>S and W (with W at (t-1))</td>
<td>(t)</td>
<td>>0 unless (q \leq 0.4, \gamma \leq 0.5) or (q \leq 0.5, \gamma \geq 0.6)</td>
</tr>
<tr>
<td></td>
<td>S and W (with S at (t-1))</td>
<td>(t)</td>
<td><0 unless (q = 0.9, \gamma \leq 0.3)</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>(t+1)</td>
<td><0 unless (q = 0.1, \gamma \leq 0.5)</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>(t+1)</td>
<td>>0</td>
</tr>
</tbody>
</table>

Incomplete information in this model may force the economy into recession under a weak type central banker. Episodes of high inflation delivered under discretionary monetary policy and economic recession were common in the 80’s in several countries worldwide. Although a deeper investigation of the institutional framework would be needed to link these

7 Matlab numerical calculations were used in order to obtain the results in table 3. The corresponding programs can be obtained upon request to the authors.
stylized facts with the revised model, it is interesting to note that the model might be able to replicate a wider range of real world problems.

In Walsh, the output gap in the first period of the separating equilibrium under commitment can take positive, null or negative values, but the conditions for each of these cases are quite different from the ones obtained with homogeneous information sets.

3.5. Market power to discipline an opportunistic central bank

An important difference, which changes what we consider to be the core of Walsh (2000), is the influence of the heterogeneity of contracts in the likelihood of the pooling equilibrium. Walsh argues “the greater the prevalence of multi-period wage contracts, the more likely it is that pooling results”. Later in the paper, the author goes on further to say that a higher \(k \) (which is decreasing with \(\gamma \)) will force the opportunistic central bank to be patient, and make the separating equilibrium unlikely. As a result, “market discipline may serve to constrain the behavior of the central bank, forcing the central bank to ‘do the right thing’”.

We found that this argument holds only for heterogeneous information sets. With homogeneous information sets, the pooling equilibrium is very unlikely. With standard discount rates \((\rho \geq 0.9) \), pooling exists only for very high credibility levels and a relatively high share of short-term contracts\(^8\). Therefore, the present model predicts that the weak central banker will usually not mimic the strong one in a pooling equilibrium, and thus the expectations channel derived from multi-period wage contracts loses the disciplinary property highlighted in Walsh (2000).

4. Conclusion

The assumption that different wage contracts signed simultaneously have different information sets is crucial for Walsh (2000) to conclude that forward looking expectations are an important disciplinary device for central bankers. The present article shows that, with homogeneous information sets, pooling equilibria will generally not occur, so that the disciplinary channel will be lost.

\(^8\) The conditions for pooling are only satisfied if \((\gamma \in [0.3, 0.6], q = 0.9) \) or \((\gamma \geq 0.7, q \geq 0.8) \)
In the aggregate supply function, unanticipated inflation persistence affects the output gap and thus future expectations weight less than past expectations of current inflation. In Walsh, a strong central banker is expected to drive output growth to levels below the trend in the second period of a pooling equilibrium, whereas under homogeneous information sets, the conservative central banker may in some cases generate output growth above trend levels. This result is particularly important, not only from a theoretical viewpoint, but also to give further support to Cukierman and Liviatan (1991)’s argument that by observing output expansions above trend levels one cannot immediately conclude that the central bank was lenient with inflation.

Under discretion, the economy will not always expand. This new theoretical result may explain why several countries experienced high inflation with deep economic recessions in the 80’s.

Finally, optimal inflation is higher with homogeneous information sets, which implies that the power of time inconsistency is higher here than in Walsh (2000).
References

1 Implementing Inflation Targeting in Brazil
Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang
Jul/2000

2 Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil
Eduardo Lundberg
Monetary Policy and Banking Supervision Functions on the Central Bank
Eduardo Lundberg
Jul/2000

3 Private Sector Participation: a Theoretical Justification of the Brazilian Position
Sérgio Ribeiro da Costa Werlang
Jul/2000

4 An Information Theory Approach to the Aggregation of Log-Linear Models
Pedro H. Albuquerque
Jul/2000

5 The Pass-Through from Depreciation to Inflation: a Panel Study
Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang
Jul/2000

6 Optimal Interest Rate Rules in Inflation Targeting Frameworks
José Alvaro Rodrigues Neto, Fábio Araújo and Marta Baltar J. Moreira
Jul/2000

7 Leading Indicators of Inflation for Brazil
Marcelle Chauvet
Sep/2000

8 The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk
José Alvaro Rodrigues Neto
Sep/2000

9 Estimating Exchange Market Pressure and Intervention Activity
Emanuel-Werner Kohlscheen
Nov/2000

Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flóres Júnior
Mar/2001

11 A Note on the Efficient Estimation of Inflation in Brazil
Michael F. Bryan and Stephen G. Cecchetti
Mar/2001

12 A Test of Competition in Brazilian Banking
Márcio I. Nakane
Mar/2001
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Modelos de Previsão de Insolvência Bancária no Brasil</td>
<td>Marcio Magalhães Janot</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>14</td>
<td>Evaluating Core Inflation Measures for Brazil</td>
<td>Francisco Marcos Rodrigues Figueiredo</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>15</td>
<td>Is It Worth Tracking Dollar/Real Implied Volatility?</td>
<td>Sandro Canesso de Andrade and Benjamin Miranda Tabak</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>16</td>
<td>Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA</td>
<td>Sergio Afonso Lago Alves</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>17</td>
<td>Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção</td>
<td>Tito Nícias Teixeira da Silva Filho</td>
<td>Abr/2001</td>
</tr>
<tr>
<td>18</td>
<td>A Simple Model for Inflation Targeting in Brazil</td>
<td>Paulo Springer de Freitas and Marcelo Kfoury Muinhos</td>
<td>Apr/2001</td>
</tr>
<tr>
<td>19</td>
<td>Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model</td>
<td>Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo</td>
<td>May/2001</td>
</tr>
<tr>
<td>20</td>
<td>Credit Channel without the LM Curve</td>
<td>Victorio Y. T. Chu and Márcio I. Nakane</td>
<td>May/2001</td>
</tr>
<tr>
<td>22</td>
<td>Decentralized Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Jun/2001</td>
</tr>
<tr>
<td>23</td>
<td>Os Efeitos da CPMF sobre a Intermediação Financeira</td>
<td>Sérgio Mikio Koyama and Márcio I. Nakane</td>
<td>Jul/2001</td>
</tr>
<tr>
<td>25</td>
<td>Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00</td>
<td>Pedro Fachada</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>26</td>
<td>Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil</td>
<td>Marcelo Kfoury Muinhos</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>No.</td>
<td>Título</td>
<td>Autor(es)</td>
<td>Data</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>27</td>
<td>Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais</td>
<td>Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flóres Júnior</td>
<td>Set/2001</td>
</tr>
<tr>
<td>29</td>
<td>Using a Money Demand Model to Evaluate Monetary Policies in Brazil</td>
<td>Pedro H. Albuquerque and Solange Gouvêa</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>30</td>
<td>Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak and Sandro Canesso de Andrade</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>31</td>
<td>Algumas Considerações sobre a Sazonalidade no IPCA</td>
<td>Francisco Marcos R. Figueiredo e Roberta Blass Staub</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>32</td>
<td>Crises Cambiais e Ataques Especulativos no Brasil</td>
<td>Mauro Costa Miranda</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>35</td>
<td>Uma Definição Operacional de Estabilidade de Preços</td>
<td>Tito Nícius Teixeira da Silva Filho</td>
<td>Dez/2001</td>
</tr>
<tr>
<td>38</td>
<td>Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro</td>
<td>Frederico Pechir Gomes</td>
<td>Mar/2002</td>
</tr>
<tr>
<td>40</td>
<td>Speculative Attacks on Debts, Dollarization and Optimum Currency Areas</td>
<td>Aloisío Araújo and Márcia Leon</td>
<td>Apr/2002</td>
</tr>
<tr>
<td>41</td>
<td>Mudanças de Regime no Câmbio Brasileiro</td>
<td>Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho</td>
<td>Jun/2002</td>
</tr>
</tbody>
</table>
43 The Effects of the Brazilian ADRs Program on Domestic Market Efficiency
Benjamin Miranda Tabak and Eduardo José Araújo Lima

Jun/2002

44 Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil
Pedro Cavalcanti Ferreira and Osmani Teixeira de Carvalho Guillén

Jun/2002

45 Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence
André Minella

Aug/2002

46 The Determinants of Bank Interest Spread in Brazil
Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane

Aug/2002

47 Indicadores Derivados de Agregados Monetários
Fernando de Aquino Fonseca Neto and José Albuquerque Júnior

Set/2002

48 Should Government Smooth Exchange Rate Risk?
Ilan Goldfajn and Marcos Antonio Silveira

Sep/2002

49 Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade
Orlando Carneiro de Matos

Set/2002

50 Macroeconomic Coordination and Inflation Targeting in a Two-Country Model
Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira

Sep/2002

51 Credit Channel with Sovereign Credit Risk: an Empirical Test
Victorio Yi Tson Chu

Sep/2002

52 Generalized Hyperbolic Distributions and Brazilian Data
José Fajardo and Aquiles Farias

Sep/2002

53 Inflation Targeting in Brazil: Lessons and Challenges
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos

Nov/2002

54 Stock Returns and Volatility
Benjamin Miranda Tabak and Solange Maria Guerra

Nov/2002

55 Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil
Carlos Hamilton Vasconcelos Araújo and Osmani Teixeira de Carvalho de Guíllén

Nov/2002

56 Causality and Cointegration in Stock Markets: the Case of Latin America
Benjamin Miranda Tabak and Eduardo José Araújo Lima

Dec/2002

57 As Leis de Falência: uma Abordagem Econômica
Aloisio Araújo

Dez/2002

58 The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case
Benjamin Miranda Tabak

Dec/2002

59 Os Preços Administrados e a Inflação no Brasil
Francisco Marcos R. Figueiredo and Thaís Porto Ferreira

Dez/2002
60 Delegated Portfolio Management
Paulo Coutinho and Benjamin Miranda Tabak
Dec/2002

61 O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor Em Risco para o Ibovespa
João Maurício de Souza Moreira e Eduardo Facó Lemgruber
Dez/2002

62 Taxa de Juros e Concentração Bancária no Brasil
Eduardo Kiyoshi Tonooka e Sérgio Mikio Koyama
Fev/2003

63 Optimal Monetary Rules: the Case of Brazil
Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak
Feb/2003

64 Medium-Size Macroeconomic Model for the Brazilian Economy
Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves
Feb/2003

65 On the Information Content of Oil Future Prices
Benjamin Miranda Tabak
Feb/2003

66 A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla
Pedro Calhman de Miranda e Marcelo Kfoury Muinhos
Fev/2003

67 Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil
Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Fev/2003

68 Real Balances in the Utility Function: Evidence for Brazil
Leonardo Soriano de Alencar and Márcio I. Nakane
Feb/2003

69 r-filters: a Hodrick-Prescott Filter Generalization
Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto
Feb/2003

70 Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates
Benjamin Miranda Tabak
Feb/2003

71 On Shadow-Prices of Banks in Real-Time Gross Settlement Systems
Rodrigo Penaloza
Apr/2003

72 O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras
Ricardo Dias de Oliveira Brito, Angelo J. Mont’Alverne Duarte e Osmani Teixeira de C. Guillen
Maio/2003

73 Análise de Componentes Principais de Dados Funcionais – Uma Aplicação às Estruturas a Termo de Taxas de Juros
Getúlio Borges da Silveira and Octavio Bessada
Maio/2003

74 Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa
Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves
Maio/2003

75 Brazil’s Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth
Ilan Goldfajn, Katherine Hennings and Helio Mori
Jun/2003
76 **Inflation Targeting in Emerging Market Economies**
Arminio Fraga, Ilan Goldfajn and André Minella
Jun/2003

77 **Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility**
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos
Jul/2003

78 **Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro**
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber
Out/2003

79 **Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil**
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber
Out/2003

80 **Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina**
Arnildo da Silva Correa
Out/2003

81 **Bank Competition, Agency Costs and the Performance of the Monetary Policy**
Leonardo Soriano de Alencar and Márcio I. Nakane
Jan/2004

82 **Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro**
Claudio Henrique da Silveira Barbedo e Gustavo Silva Araújo
Mar/2004

83 **Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries**
Thomas Y. Wu
May/2004

84 **Speculative Attacks on Debts and Optimum Currency Area: A Welfare Analysis**
Aloisio Araujo and Marcia Leon
May/2004

André Soares Loureiro and Fernando de Holanda Barbosa
May/2004

86 **Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo**
Fabio Araujo e João Victor Issler
Maio/2004

87 **Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil**
Ana Carla Abrão Costa
Dez/2004

88 **Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime Markoviana para Brasil, Argentina e Estados Unidos**
Arnildo da Silva Correa e Ronald Otto Hillbrecht
Dez/2004

89 **O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central**
Fernando N. de Oliveira
Dez/2004
90 Bank Privatization and Productivity: Evidence for Brazil
Márcio I. Nakane and Daniela B. Weintraub
Dec/2004

91 Credit Risk Measurement and the Regulation of Bank Capital and Provision Requirements in Brazil – A Corporate Analysis
Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama and Guilherme Cronemberger Parente
Dec/2004

92 Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil
Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos
Apr/2005

93 Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial
Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Abr/2005

94 Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Histórico de Cálculo de Risco para Ativos Não-Lineares
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo Facó Lemgruber
Abr/2005