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In this paper, we propose a novel methodology to measure systemic risk in
networks composed of financial institutions. Our procedure combines the impact
effects obtained from stress measures that rely on feedback centrality properties with
default probabilities of institutions. We also present new heuristics for designing
feasible and relevant stress-testing scenarios that can subside regulators in financial
system surveillance tasks. We develop a methodology to extract banking communities
and show that these communities are mostly composed of non-large banks and have a
relevant effect on systemic risk. This finding renders these communities objects of
interest for supervisory activities besides SIFIs and large banks. Finally, our results
provide insights and guidelines that can be useful for policymaking.
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1 Introduction

The occurrence of international financial crises in recent years has highlighted
the need of understanding and assessing systemic risk. Besides the identification of
mechanisms that may lead a financial system to a systemic crisis, it stands as an important
task to identify the potential financial institutions (FIs) that may play a key role on a crisis
onset. Furthermore, it is essential to have tools for assessing financial system conditions at
any given time: is it next to a crisis? Is it possible to intervene to mitigate this risk and
assure the financial stability? How do we optimally accomplish that, using the minimum
possible resources to reach the desired effect?

Systemic crises usually begin in a single or small group of FIs and spread to a larger
portion of the financial system, eventually affecting the real sector. Besides the surveillance
of individual FIs, it is necessary to identify contagion mechanisms and define actions to
mitigate the effects that systemic outbreaks provoke. The literature has been concerned
with the possibility that the manner in which FIs relate to each other in a network is relevant
to the contagion process. See, for instance, Boss et al. (2004); Furfine (2003); Inaoka et al.
(2004); Soramäki et al. (2007).

Interbank markets play an essential role in a well-functioning integrated financial
system through the provision of liquidity among banks. FIs lend or borrow money among
themselves and make commitments of repayments at the due dates. If an FI fails in the
repayment of its loans, its creditors may have trouble in honoring their debts, propagating
the effects of the original failure to other institutions, in a contagion process. Problems af-
fecting one institution may spread to other ones and even to institutions across international
borders.

The contribution of this work is threefold. The first contribution is the proposal
of a novel network-based scheme for evaluating systemic risk, which is inspired by the
well-known DebtRank methodology (Battiston et al. (2012b)) and Merton structural model
(Merton (1974)). Our framework combines financial stress levels of banks, which we
evaluate using network measures that rely on feedback centrality mechanisms, together
with the default probability (DPs) of banks, which we compute using banks’ balance sheets.
We then estimate the systemic risk using the expected impact of the financial system. We
motivate the use of a network-based approach because it is able to capture topological
aspects of the data relationships, which in turn may help in extracting nonlinear features of
the risks embodied into the FIs relationships (Silva and Zhao (2012, 2015)). We analyze
this new scheme in the Brazilian interbank market network. With this modification, we
move forward with respect to the methodology presented by Battiston et al. (2012b), by
modulating the impact effects estimated by their DebtRank methodology proportionally
to the DPs of the institutions. To the best of our knowledge, this is the first paper that
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evaluates systemic risk by combining DPs and loss given default (LGD) using network
analysis methodologies.

The main finding is that medium-sized banks contribute more to the systemic risk
in the Brazilian interbank market network, followed by small and large banks, in this
order. The reasoning behind this is that, even though large banks inflict the largest financial
stress levels, their DPs are very small, yielding a very small modulated expected impact
in our proposed framework. Opposed to that, medium- and small-sized banks, though
only causing moderate or small financial stress levels, hold non-negligible DPs. Putting
together these two indicators make their contribution to the systemic risk in the interbank
market superior to that of large banks.

The second contribution of this paper is the development of new heuristics for
designing stress-testing scenarios using network analysis tools. From a regulator viewpoint,
a key issue in stress testing is how to develop credible and relevant scenarios that can help
in assessing overall risks for the banking system. In this respect, most research to date
has focused on how to calculate expected losses given that fixed initial scenario occurred.
There is very little discussion in the literature on how to construct scenarios, which may be
relevant for stress-testing purposes. A relevant scenario for banking stress tests would be
to detect those banks that are likely to jointly default and to evaluate the impact of these
joint defaults on the banking system. With this tool, we can also assess how they may lead
to cascade failures and losses amplification.

We develop a methodology to detect bank communities that are likely to default
jointly. While the main literature stream makes efforts to finding the systemically important
financial institutions (SIFI) according to some centrality criterion (Papadimitriou et al.
(2013)), here we devise a strategy that relies on the identification of bank communities
that potentially can inflict large losses to the financial system. We employ a community
detection algorithm to uncover these communities with non-negligible joint default proba-
bilities and show that they have larger systemic risk impacts than those provoked by large
banks. This suggests that, although size and interconnectedness matters, it is crucial to
evaluate the emergence of these kinds of bank communities, which may also be a trigger
for systemic risk. Moreover, the identification of whether or not these bank communities
exist stands as an important practical task, as bank communities with high pairwise joints
DPs may turn the occurrences of joint bank defaults from rare to probable events.

Our third contribution is the development of a new systemic risk measure for the
banking system: the systemic stress amplification. While the expected stress measures
the additional stress that results from the combination of default events (1, 2 and 3-bank
simultaneous defaults) weighted by their probability, the systemic stress amplification
identifies the general condition of the capitalization of the banking system, providing
an information of additional stress per unit of initial shock. We note that the measure
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responded coherently to liquidity issues related to foreign capital inflows and bank reserves
regulation, in 2010 and 2012.

The recent financial crises have provided evidence for the following contagion
channels: risk concentration channel, in which a significant number of banks is exposed to
a common risk factor; balance sheet contagion channel, in which failure on debt repayment
causes the write off of these assets by the corresponding creditors; price-mediate contagion,
related to asset fire sales, that induces losses due to marking-to-market or to having to
sell assets that are being fire-sold; and the occurrence of illiquidity spirals, due to margin
calls or short-term liabilities. Though these contagion channels can potentially propagate
large losses, we focus on the balance sheet contagion channel in this paper. In addition,
our framework only deals with solvency issues. Hence, we do not take into account the
liquidity of the institutions. Despite this restriction, this approach has the advantage of
measuring the stress levels of the entire financial system or of individual institutions. This
positive property gives room to the analysis of sources of stress in the financial system,
as well as to the identification of groups formed by SIFIs. We can use the proposed
methodology as an auxiliary tool for monitoring the financial system, indicating the overall
and local stress levels. Given this information, a central bank would have more data to
properly take actions to remedy the observed stress situation.

The paper proceeds as follows. In Section 2, we present a literature review on
contagion and systemic risk models, emphasizing the network-based ones. In Section 3,
we discuss the main contribution of this paper: the systemic risk framework. In Section
4, we provide meta-information on the supervisory and accounting data employed in this
paper. In Section 5, we present the main results and findings. Finally, in Section 6, we
draw some conclusions.

2 Literature

Contagion is a key factor for systemic risk. We verify a growing literature on conta-
gion between FIs, addressing its theoretical foundations (Allen and Gale (2001); Rochet
and Tirole (1996)), the identification of different contagion mechanisms for several markets
(Degryse and Nguyen (2007); Elsinger et al. (2006a); Lehar (2005); Mistrulli (2011)), the
proposal of models to analytically gauge systemic risk (Catullo et al. (2015); Elsinger
et al. (2006a); Iori et al. (2006); Martı́nez-Jaramillo et al. (2010); van den End (2009)),
the design of empirical tests (Castiglionesi (2007); Hsiao et al. (2011); Pe et al. (2010))
and the investigation of methods for preventing or minimizing contagion (Castiglionesi
(2007)).

Allen and Gale (2001) is a seminal paper that models financial contagion as an
equilibrium phenomenon. They find that a small liquidity preference shock in one region
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can spread by contagion throughout the economy. Allen and Gale (2001) argue that
the possibility of contagion strongly depends on the completeness of the structure of
interregional claims, being more robust when complete.

Following that, Allen and Gale (2004) show that a large number of possibilities
exists concerning the relationship between market structure and financial stability. Since
these are important arguments and, as there are trade-offs between these aspects of the
banking system, prudential regulatory intervention and supervision are needed in their
various forms.

Contagion has also been measured more broadly by taking into account different
shocks. Elsinger et al. (2006a) simulate the joint impact of interest rate shocks, exchange
rate shocks and stock market movements on interbank payment flows of Austrian banks.
They distinguish between insolvency due to correlated exposures and due to domino
effects. They also show that both correlation and interlinkages are important determinants
for assessing systemic financial stability. In particular, the probability of systemic events,
such as the joint breakdown of major institutions, is underestimated when we ignore
cross-correlations between banks.

A review and criticism of the literature lies in Upper (2007), a survey paper that
analyzes computer simulations of contagion due to interbank lending, gathering infor-
mation on the methodologies they use. He emphasizes that one has to bear in mind the
potential bias caused by the very strong assumptions underlying these simulations. Those
papers suggest that contagion due to lending in the interbank market is likely to be rare.
However, if contagion does take place, the costs to the financial system can be very high,
destroying a sizable proportion of the banking system in terms of total assets. He also
verifies that the majority of the simulations available in the literature is based on models
that only incorporate extremely rudimentary behavior by banks or policymakers. Besides,
he stresses the need of taking into account multiple shocks (many simulations usually begin
with a shock in a single bank), as in Elsinger et al. (2006a), and highlights the relevance
between insolvency and illiquidity of banks, such as in Müller (2006).

Another literature stream that has received increasing attention is of network theory
analysis applied to financial markets. In this respect, Inaoka et al. (2004) analyze the
network structure of financial transactions, using data of financial transactions through the
Bank of Japan payments’ system. They find evidence of a certain degree of robustness
within the network and suggest an analysis of its dynamics. A similar work is performed in
Iori et al. (2008), who analyze the Italian segment of the European overnight money market
through methods of statistical mechanics applied to complex networks. Reinforcing the
same topic, Soramäki et al. (2007) also investigate the network topology of the interbank
payments transferred between commercial banks over the Fedwire Funds Service (USA),
finding that the network properties changed considerably in the immediate aftermath
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of the events of September 11, 2001. Moreover, Embree and Roberts (2009) describe
the daily and intraday network structure of payment activities in the Canadian Large
Value Transfer System, finding that there are only few stable systemically important
participants. In a related approach, Tabak et al. (2013) investigate how bank sizes and
market concentration affect performance and risk buildup in networks formed by several
Latin American countries.

The influence of the network topology on determining systemic risk levels in financial
systems is another line of research that has obtained increased attention by academics and
policymakers. In this aspect, Nier et al. (2007) measure systemic risk by varying network
formation parameters that define the structure of the financial system, such as level of
capitalisation, the degree to which banks are connected, the size of interbank exposures and
the degree of concentration of the system, and analyse the influence of these parameters on
the likelihood of knock-on defaults. In turn, Battiston et al. (2012a) show that financial
networks can be more resilient for intermediate levels of risk diversification rather than
for extreme values. Teteryatnikova (2014) highlights the advantages of tiered networks by
analyzing risk and potential impact of system-wide defaults in a tiered banking network, in
which a small group of head institutions has many credit linkages with other banks, while
the majority of banks has only a few links.

Several papers also propose suitable network measurements that serve as indicators to
estimate systemic risk. In the financial network literature, Battiston et al. (2012b) proposes
the DebtRank measure, which is a feedback centrality measure, to estimate financial stress
in the network. In turn, Silva et al. (2015) introduce network measurements that identify
remotely vulnerable and contagious FIs, which are useful indicators for bank monitoring
and surveillance. Martı́nez-Jaramillo et al. (2014) provide network measurements related to
systemic risk for the Mexican banking system in a systematic and comprehensive manner.
Generally, these indicators belong to a class of measures called centrality measures, which
is a topic extensively explored in the complex network literature (Silva and Zhao (2016)).
Among some classical centrality measures, we highlight Katz and Bonacich indices,
PageRank, communicability, betweenness.

3 Methodology

In this section, we present the two main contributions of the paper.
In Section 3.1, we describe our framework to evaluate systemic risk. The model

weighs the financial stress that an initial shock scenario causes on the system to the
probability of occurrence of that scenario. To estimate the occurrence of these scenarios,
we evaluate the DPs of individual, pairs, and groups of three FIs. We do not consider
scenarios with higher orders of joint defaults due to data unavailability. To evaluate the
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expected systemic risk of the financial system, we combine all of these initial shock
scenarios and their corresponding stress values. To prevent double counting in this process,
we design initial shock events that are disjoint.

In Section 3.2, we provide a novel heuristic for designing feasible and relevant stress-
testing scenarios. The procedure identifies bank communities in a graph constructed from
pairwise default probabilities. We construct this graph by keeping only those connections
that lead to large stress levels in the financial system. By doing this, we retrieve stress-
testing scenarios that are relevant from a financial surveillance viewpoint. In addition, by
identifying strongly-connected bank communities, we filter out unfeasible stress-testing
scenarios.

3.1 Systemic risk

In Section 3.1.1, we briefly review the DebtRank methodology that we use to
estimate financial stress in the network given an initial shock. In Section 3.1.2, we detail
the framework to compute the expected systemic risk of the financial system. Finally, in
Section 3.1.3, we define a novel systemic risk indicator that gauges the expected stress
amplification of the financial system.

3.1.1 DebtRank

We employ the DebtRank method to compute the additional stress that occurs in the
financial system due to an exogenous initial shock on one or more FIs. Throughout this
paper, we use the terms “impact” and “DebtRank” interchangeably.

The computation of the DebtRank measure is inspired by feedback centrality mea-
sures. Feedback centrality measures are those in which the centrality of a node depends
recursively on the centrality of its neighbors.

The intuition associated with DebtRank is as follows. Suppose we have a network of
mutually exposed banks. Each of these banks has assets and liabilities, among which a
fraction is related to the counterparties within the network, and a capital buffer. If a bank
suffers assets losses greater than its capital buffer, it becomes insolvent and we assume it
defaults. In this case, the bank will not be able to honor any of its liabilities. If those losses
are lower than its capital buffer, the bank will be in distress and will not pay its creditors
a proportional part of its liabilities. This very definition of the DebtRank characterizes it
as a stress measure: if a bank suffers a loss of 90% of its capital buffer, it is solvent and
does not propagate any losses in a default cascade methodology, such as in that defined in
Eisenberg and Noe (2001). In the DebtRank method, however, the bank is almost insolvent
and propagates losses by paying only 10% of its liabilities for the network members. We
can say that losses are potential in the DebtRank method. Therefore, only a portion or
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none of them may materialize at all. The creditors of the defaulted bank, in turn, will suffer
losses and undergo through the same process. This feedback process continues until the
system converges.

The DebtRank method (Battiston et al. (2012b)) models the interbank market as a
directed network G = 〈V ,E 〉, in which FIs compose the vertex set V and the exposures
between them compose the set of edges E . These links are represented by a weighted
adjacency matrix A, where the (i, j)-th entry, Ai j, denotes the amounts lent by institution
i to institution j. The total liabilities of i are given by Li = ∑ j∈V A ji and the relative
economic value of an institution i is given by νi = Li/∑i∈V Li, which is the fraction of i’s
liabilities with respect to the total liabilities in the interbank market. Our option contrasts
with that of Battiston et al. (2012b), who define the relative economic value of an institution
as the share of i’s assets to the total assets in the network. However, we use the liabilities
share because, once a banks default, the losses that other members in the network have
correspond to the liabilities of that defaulted bank towards them.

Each institution i has a capital buffer against shocks, Ei, which is its tier 1 capital.
If Ei ≤ γ , the firm defaults, where γ is a positive threshold. If vertex j defaults, all of the
neighbors i will suffer losses amounting to their exposure towards j, given by Ai j. When
Ai j > Ei, then vertex i defaults. The local impact of j on i is W ji = min

(
1,Ai j/Ei

)
so that

if i’s losses exceed its capital, the local impact is 1.
The presence of cycles in the network inflates the computed impacts by counting the

local impact of a node onto another more than once. To avoid the distortion caused by this
double-counting, Battiston et al. (2012b) present an algorithm that allows a single impact
propagation per each node. We define the state of FI i as being described by the following
dynamical variables at time t:

- hi(t) ∈ [0,1], which accounts for the stress level of i. If hi(t) = 0, i is undistressed;
when hi(t) = 1, i is on default.

- si(t) ∈ {U,D, I}, which is a categorical variable that assumes one of the following
values: undistressed (U), distressed (D) and inactive (I).

DebtRank evaluates the additional stress caused by some initial shocks using a
dynamical system. We model these shocks by adjusting the initial conditions of that
system when t = 1. The institutions with initial stress level hi(1) = 0 are undistressed,
i.e., si(1) = U . If hi(1) > 0, they are distressed, i.e., si(1) = D. Those institutions with
hi(1) = 1 are initially on default. We update this dynamical system using the following
update rules:
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hi(t) = min

{
1,hi(t−1)+ ∑

j∈V
W jih j(t−1)

}
, where j | s j(t−1) = D,

si(t) =


D if hi(t)> 0;si(t−1) 6= I

I if si(t−1) = D

si(t−1) otherwise

(1)

In (1), the dynamical variables hi(t), ∀i ∈ V , are updated using available information
from the previous step. After this, the variables si(t) are also updated. If si(t− 1) = D,
si(t) = I, preventing institution i of propagating impact to its successors more than once.

After a finite number of steps T , the dynamics stops. We compute the resulting
DebtRank due to the initial shock scenario h(1) as follows:

DR = ∑
j∈V

h j(T )ν j− ∑
j∈V

h j(1)ν j.

= ∑
j∈V

h j(T )ν j−S, (2)

in which S denotes the impact of the initial shock:

S = ∑
j∈V

h j(1)ν j. (3)

Note that DR in (2) effectively evaluates the additional stress in the network that
results from the initial shock h(1).

3.1.2 Expected systemic stress

To compute the expected systemic stress, we first need to evaluate DPs of individual,
pairwise, and groups of three FIs. We use Merton (1974)’s structural model to evaluate
the individual DPs and Segoviano (2006)’s CIMDO methodology to estimate the pairwise
DPs.1 In contrast, we propose a new procedure to evaluate DPs of groups of three FIs.

We assume that these DPs are not affected by the impact propagation process, that
is, changes in cross-exposures of banks occurring in a short time span do not affect DPs.2

1Appendix A details how to evaluate individual DPs from the Merton (1974)’s structural model. In
addition, Appendix B shows the underpinnings of the Segoviano (2006)’s CIMDO methodology that we
employ to calculate pairwise DPs.

2In this paper, we consider that DPs are probabilities that a bank’ assets value falls below its distress bar-
rier in a 1-year time horizon, starting from the current value and following a stochastic process. Considering
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We avoid double-counting of individual banks’ expected impacts by considering a sample
space D composed of tuples that represent all possible combinations of occurrences of
idiosyncratic defaults in the banking system. We associate each tuple with a joint default
probability measure together with the impact it causes should that probability event occurs
as an initial shock scenario. Since we deal with all of the possible combinations of bank
default events, the overall probability must sum up to 1. Moreover, these tuples are all
pairwise disjoint events. Thus, we can compute the expected systemic stress as the sum of
products between the DPs and the impact associated with the default events represented by
each of the tuples in D .

Let I be a random discrete-valued variable, which we associate with impacts IEi that
arise from default events of single banks Ei ∈ D . Initially, consider only two events E1

and E2 that we associate with the defaults of banks 1 and 2, respectively. The distribution
of I is:

I( j) =


IE1, if j ∈ E1 \E2 tuple.
IE2, if j ∈ E2 \E1 tuple.
IE1∩E2, if j ∈ E1∩E2 tuple.
0, otherwise.

(4)

Then, the expected impact from these defaults is:

E[I] = ∑
j∈D

X( j)p( j)

=IE1P(E1 \E2)+ IE2P(E2 \E1)+ IE1∩E2P(E1∩E2)

=IE1 [P(E1)−P(E1∩E2)]+ IE2 [P(E2)−P(E1∩E2)]

+ IE1∩E2P(E1∩E2)

(5)

We note that we cannot sum both regions from events E1 and E2 and subtract that
from E1∩E2 because each region has its own weight I. Equation (5) means that in the
region of the sample space in which only bank 1 defaults, impacts are IE1 . Similarly, in the
region in which only bank 2 defaults, impacts are IE2 . Finally, in the region where banks 1
and 2 both fail, impacts are IE1∩E2 .

Generalizing for n events, we can calculate the expected impact of the system as
follows:

that interbank exposures are a part of the bank’s assets, we make a simplifying assumption that interbank
exposures changes are included in bank assets changes and, therefore, do not produce additional effects on
DPs.
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E[I] =
n

∑
i=1

X (1)
i P(Ei)+ ∑

1≤i< j≤n
X (2)

i, j P(Ei∩E j)+

+ ∑
1≤i< j<k≤n

X (3)
i, j,kP(Ei∩E j∩Ek)+ . . . (6)

with:

X (1)
i = IEi,

X (2)
i, j = IEi∩E j − IEi− IE j , and

X (3)
i, j,k = IEi∩E j∩Ek− IEi∩E j − IEi∩Ek− IE j∩Ek + IEi + IE j + IEk .

(7)

The time for computing E[I] grows exponentially as the number of events or banks
increases. For two events, for instance, we need to compute impacts IE1 , IE2 and IE1∩E2 . In
contrast, for n events, we have to evaluate 2n−1 terms, which is computationally infeasible
for a real financial system that often has large n. Moreover, due to data unavailability, we
cannot calculate the joint probabilities of three or more simultaneous default events. To
circumvent this limitation, we approximate the expected impact for n events using only the
contributions of single, pairs, and groups of three banks. They correspond to the first three
terms in the RHS of (6).

Since we do not have the exact default probability of bank triples, we estimate
P(Ei∩E j ∩Ek) using proxies. Now, we focus on the employed methodology to obtain
these proxies P(Ei∩E j ∩Ek), ∀i, j,k ∈ V , to allow for the computation of the expected
systemic stress using up to three intersection terms.

First, we rewrite (6) in a way to represent the union probability of default events in
the financial system using the inclusion-exclusion principle:

P

( ⋃
E∈D

)
=

n

∑
i=1

P(Ei)− ∑
1≤i< j≤n

P(Ei∩E j)+

+ ∑
1≤i< j<k≤n

P(Ei∩E j∩Ek)−·· · (8)

Our estimations consist in finding the maximum and minimum bounds for P(Ei∩
E j∩Ek), given that we know the marginal and pairwise DPs. The upper limit is given by:

Pup(Ei∩E j∩Ek) = min(P(Ei∩E j),P(Ei∩Ek),P(E j∩Ek),1−Pres(S3)), (9)
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in which Pres(S3) is computed for the set S3 formed by the events Ei, E j and Ek according
to (10), here defined for a generic set of g events E1, · · · ,Eg:

Pres(Sg) =
g

∑
i=1

P(Ei)− ∑
1≤i< j≤g

P(Ei∩E j). (10)

The first three terms in the min(·) operator in (9) come from the fact that a 3-event
intersection cannot be greater than the minimum of pairwise intersections of the same
events. The last term guarantees that P(Ei∪E j∪Ek)≤ 1.

We consider that the lower limit is zero:

Plow(Ei∩E j∩Ek) = 0 (11)

We propose that the union probability will stay in the interval given by: [Pres,Pres +

∑i, j,k Pup(Ei∩E j∩Ek)]. The reasoning behind this is that each term i of (8) overestimates
the probability of the union of the intersection of i events by considering them as disjoint
ones. Thus, the term i+1 corrects this surplus by taking into account the intersections of
i+1 events with the opposite sign. For instance, the first term of the equation considers
that the union probability is the sum of n single (disjoint) events. If they are not, the second
term subtracts the sum of all intersections of two events, considering them as disjoint ones,
thus, the third term adds the sum of intersections of three events, and so on.

Writing (8) as the sum of its three first terms and substituting in the third term the
upper or the lower bounds of the 3-event intersection probabilities may yield results outside
the interval [0,1]. That is possible because if we only write the first i terms of (8), we
are considering that the terms from i+ 1 onwards are zero. Probabilistically speaking,
this hypothesis is the same as considering that high-order intersections are disjoint (hence
zero), which is a rather strong assumption.

To correct this caveat using the available information, we estimate a medium term
from the upper and lower bounds for each of the DPs of bank triples in the summation in
the third term of (8), such that substituting those terms back into equation we achieve a
probability inside the unitary interval. Specifically, we estimate the medium term as:

Pmed(Ei∩E j∩Ek) = Plow(Ei∩E j∩Ek)+

+α(Pup(Ei∩E j∩Ek)−Plow(Ei∩E j∩Ek)) (12)

in which α is a proportionality factor. Note that we use the same proportionality factor
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α when computing the medium terms of all of the 3-event intersection probabilities. We
express α as a ratio in which the numerator is the difference of the summation of the
lower limits of P(Ei ∩E j ∩Ek) to the residual formed by the sum of the joint default
probabilities of order higher than two in (8) and the denominator is the difference between
the summations of upper and lower limits of P(Ei∩E j∩Ek):

α =
P(E1∪ . . .∪En)−Pres(Sn)−∑1≤i< j<k≤n Plow(Ei∩E j∩Ek)

∑1≤i< j<k≤n
[
Pup(Ei∩E j∩Ek)−Plow(Ei∩E j∩Ek)

] , (13)

We also approximate the union probability of all default events by the maximum 3-event
union probability, due to data unavailability:

P(E1∪ . . .∪En) = max
Ei,E j,Ek∈D

P(Ei∪E j∪Ek). (14)

Substituting (14) and (11) into (13) we get:

α =
maxEi,E j,Ek∈D P(Ei∪E j∪Ek)−Pres(Sn)

∑1≤i< j<k≤n Pup(Ei∩E j∩Ek)
. (15)

We conclude the computation of the expected systemic stress using (6), substituting
the probabilities in the third summation term by Pmed(Ei∩E j∩Ek) as computed in (12).

3.1.3 Systemic stress amplification

DebtRank measures the additional stress in the financial system that results from
a given initial shock. In this paper, we mold initial shocks as idiosyncratic defaults of
individual FIs and pairs and triples of financial institutions. We can measure the stress
amplification related to a given initial shock S by computing the ratio of the additional
stress to the initial shock. The intuition related to the measure is that, given an initial shock,
the additional stress inflicted on the financial system will be greater if, ceteris paribus,
the capital buffer is lower. Based on this measure of stress amplification, we define the
systemic stress amplification (SSA), a systemic risk measure for the banking system, as
the ratio of the expected systemic stress to the systemic initial shocks given by:

SSA =
E[IE1∪···∪En]

E[SE1∪···∪En]
(16)

Above, E[IE1∪···∪En] is the expected systemic stress computed as proposed in the
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previous section when we assume that the impact weights in (7) are given by the DebtRank
measure DR. In contrast, E[SE1∪···∪En] is the expected systemic idiosyncratic default,
computed as the expected systemic stress, but substituting the impact terms in (7) by the
corresponding initial shocks as defined in (3).

3.2 Systemic group surveillance

Financial surveillance has become an important topic in the agenda of regulators in
view of the recent worldwide crises (Espinosa-Vega and Solé (2011)). It stands as a set of
supervisory and regulatory activities that aims at fostering an integrated view of financial
sector risks and at improving risk identification and policy analysis. The surveillance of
financial institutions permits the effective operation of interbank systems and thus provides
tools for assessing their current stability conditions.

We find several works in the literature (Castro and Ferrari (2014); Elsinger et al.
(2006b); Zhou (2010)) that focus on the identification and surveillance of systemically
important financial institutions (SIFIs). However, little attention has been given in studying
the implications of failures of other institutions, not necessarily SIFIs nor large ones, in the
financial system stability. Maybe one of the factors that contribute to limiting or focusing
surveillance efforts on SIFIs or large institutions comes from the evidence that, in general,
defaults of individual institutions that are not SIFIs nor large do not cause significant harm
to the financial system. In this work, we show that the existence of bank communities,
whose members are strongly interconnected in terms of pairwise joint DPs, may cause
significant impact on the financial system when we collectively analyze the default of
the community members. We also verify that the great majority of the members in these
communities are non-large banks. In this way, this finding suggests that financial stability
could be benefited with the broadening of surveillance tools to these bank communities
other than to the usual SIFIs and large banks.

3.2.1 Overview

We propose a methodology to design feasible and systemically important stress-
testing scenarios. Regulators can use these scenarios in stress-testing schemes that in
turn can support the surveillance of the financial system. The idea is to find groups or
communities of FIs that can potentially inflict significant amounts of stress in the financial
system. The reason we use a collective view of financial institutions instead of a local
approach is because the network can amplify initial shocks. Therefore, a joint default
of a subgroup of vertices can introduce much more financial stress in the system than
if we evaluate that from individual shocks on each of these members. In this way, local
approaches would not be able to identify these communities.
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We intend to identify groups or communities of FIs that can jointly default and also
to compute their corresponding systemic additional stress and risk amplification. The
purpose of this methodology is to answer the questions: Are there in the banking system
groups of FIs that could jointly default? If so, which are these groups? How significant is
the impact that those default events would produce? To answer these questions, we first
identify communities of FIs that could most probably default together. Then, we compute
the additional stress, using the DebtRank method, and the systemic risk amplification
caused by the joint default of members of these communities.

We start by forming an undirected weighted network G (DP) = 〈V (DP),E (DP)〉, where
V and E are the sets of vertices and edges, respectively. The vertex set V (DP) is iden-
tical to that of the exposures network, in which we represent its elements by financial
institutions. Initially, we create an edge between i ∈ V (DP) and j ∈ V (DP) with weight
according to P(Ei∩E j), that is, the pairwise joint DP of i and j. As the DP of joint default
increases, the larger will be the edge weight linking both entities. Though pairwise default
probabilities have often small values, they are still positive, meaning that we will have a
near-complete network structure. We describe the resulting network topology using the
weighted adjacency matrix of G (DP), which we denote here as A(DP).

Since edges carry information about how likely pairs of institutions can jointly
default, the intuition of our methodology for group surveillance is to find and monitor
those bank communities whose members are highly interconnected and, at the same time,
have few links with the remainder of the network. Since members of the same community
are expected to have several links with large weights connecting each other, the default of
the community as a whole is a feasible event to occur. To identify these communities, we
employ a community detection procedure that works in a networked environment.

Community detection is an unsupervised learning procedure that has received increas-
ing attention by the community due to its applicability in various branches of science (Silva
and Zhao (2012, 2013)). Community detection algorithms rely on certain assumptions over
the network structure to perform well in the identification of communities. One of them
states that the existence of structural and well-defined communities is only possible when
graphs are sparse (Fortunato (2010)). Sparseness arises when the number of edges is of the
order of the number of vertices. If the network is dense, the distribution of edges among the
vertices is too homogeneous for communities to make sense. Thus the network structure is
unlikely to convey relevant information to identify the community structures. Recalling
that our network structure is highly dense, we need to employ a sparsification procedure,
such as to transform the resulting network in a sparse graph, while maintaining the most
important information about the pairwise default probabilities between institutions. In this
sparsification process, we use information on the expected systemic impact of each of the
links in the networks. In order to find systemically relevant stress-testing scenarios, we
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only maintain those links whose expected systemic impact is large.
We opt to use an agglomerative community detection method because it gives us a

sense of how strong pairwise connections between members of the same community are,
in such a way that we can rank those connections that are at the core of the community and
those that are terminal or peripheral to the community. Idiosyncratic shocks on institutions
that have core connections are more likely to cascade to other community members,
because those institutions are more central in the community.

In the remainder of this section, we first show how we conduct the sparsification
procedure such as to guarantee the sparseness of the network and therefore the existence of
well-defined communities. Following that, we detail the community detection procedure
that we use to identify communities in the graph of pairwise default probabilities.

3.2.2 Network sparsification process

The network that we construct using pairwise joint DPs is likely to be very dense,
with the majority of the edge weights corresponding to negligible numbers. Here, we
discuss how we apply the proposed sparsification process such as to obtain a sparse
network, while retaining the most important network edges from a viewpoint of systemic
group surveillance.

One natural approach would be to discard all of those pairwise joint DPs that are
smaller than a small threshold. One drawback in using this approach is the potentiality
of discarding small joint DPs that ultimately lead to large potential losses in the financial
system. In order to circumvent that, we opt to discard edges according to their expected
potential loss (EPL). The EPL of institutions i and j is

EPLi j =
(
E[IEi∪E j ]+E[SEi∪E j ]

)
TA, (17)

in which E[IEi∪E j ] and E[SEi∪E j ] are the expected systemic additional stress and idiosyn-
cratic default, respectively, as defined in the previous section. We multiply the total stress
by the total interbank assets TA = ∑i j Ai j so as to convert the stress measures into the
monetary domain. Thus, EPLi j gives us a sense of the expected potential loss that would
occur in the financial system if institutions i and j jointly default.

From a systemic viewpoint, it is inviable to monitor each feasible link in the network.
A good strategy is to only keep track of those links that lead to the largest expected
potential losses. By applying a sparsifying process on the network, we are effectively
removing those links that have negligible expected potential losses. Thus we filter links of
the original weighted adjacency matrix A(DP) as follows:
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A′(DP)
i j =

A(DP)
i j , if EPLi j ≥ σ

0, otherwise
(18)

in which σ ∈ [0,∞) is user-supplied threshold that delineates the minimum expected
potential loss of links that we will consider in the filtered weighted adjacency matrix
A′(DP). Note that we can adjust the network sparseness by varying σ . As σ increases, the
network gets sparser. Due to the sparsification procedure, we expect that the resulting
graph will only have links that have representative potential losses.

Finally, we compare the approach of this work with several others in the literature
that attempt to estimate topological properties of the network using Minimal Spanning
Trees (MST) often from the cross-correlation matrix of a portfolio of financial assets
(Bonanno et al. (2003)) or credit default swaps (Puliga et al. (2014)), among others. We
argue here that the resulting network structure of an MST may not represent in a truthfully
manner the communities in network of joint DPs. For instance, say we have a large
community with large edge weights, meaning that any pair of banks has high joint DP. If
we construct an MST from this graph, we first would lose this dense structure of links,
possible creating several different communities, when in fact all of the banks are heavily
connected to each other. Second we would end up with a graph with the largest joint DPs
that necessarily do not have significant expected systemic stress should the pairs of FIs
default. We can say that the MST approach is a very aggressive sparsification process. In
fact, it theoretically results in the sparsest connected network structure. In this work, we
apply a milder sparsification procedure that attempts to retain only those representative
links that not only have high joint DPs but also significant additional stress.

We also point several drawbacks in using cross-correlation information to construct
a network. First, the fact two banks have higher than average correlation in normal times
does not guarantee to be a good proxy of the correlation of their defaults. If we construct a
network from this, community detection algorithms would probably declare banks with
highly correlated default probabilities as members of the same community. Second, the
cross-correlation is very sensitive to the period range used to compute the DPs. Third,
the network structure is highly dependent on the employed correlation index: Pearson,
Spearman, etc. We get results that are more robust by using joint DPs in our analysis, as
we get rid of the difficult problem of tuning the network using similarity metrics that are
based on cross-correlation indices.
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3.2.3 Community detection algorithm

In this section, we describe the community detection algorithm that we apply to find
bank communities. As input of the algorithm, we use the sparsified weighted adjacency
matrix A′(DP). We use the community detection algorithm proposed by Clauset et al.
(2004). This algorithm is a hierarchical community detection method that uses a bottom-
up or agglomerative approach. As such, at the initial step, it treats each vertex as a
single community and then successively merge pairs of communities until all clusters are
effectively merged into a single giant community that contains the graph itself.

The main idea of the algorithm is to optimize a network measurement called mod-
ularity. In general terms, the modularity quantifies how good a particular division of a
network in communities is. Appendix C provides a formal definition of the modularity.
In the community detection algorithm, we monitor how the network modularity evolves
as a consequence of community merges. Basically, we declare the best network split as
that community configuration in which the modularity is maximal. We are interested in
performing systemic group surveillance on that network with optimal modularity.

In the original version, Clauset et al. (2004) apply the method for non-weighted
networks. Here, we modify its underlying learning process so as to comport the community
detection for weighted networks. For that, we employ the weighted version of the network
modularity instead of its binary version.

The motivations for choosing the algorithm of Clauset et al. (2004) are as follows.
First, it has become a community detection benchmark in the complex network literature,
obtaining good community detection rates both for artificial and real-world networks
(Fortunato (2010); Silva and Zhao (2012, 2013)). Second, it does not require parameter
adjustments; hence, we can skip model selection. Third, it can find an arbitrary number of
communities in the network. These features contrast with several techniques in the complex
network literature, some of which designed to only find two communities, others with
several parameters to adjust a priori, such as the number of communities, their sizes, etc.
These kinds of information are usually unknown beforehand. Thus, by using an algorithm
that guides its decision based on the data distributions without external information in
the form of parameters, we effectively prevent the introduction of biases in the learning
process.

Due to its agglomerative nature, Clauset et al. (2004)’s algorithm starts by declaring
each vertex as members of a community itself. At each step, the algorithm merges two
communities that lead to the largest increase in the modularity Q, i.e., it finds the largest
modularity increment ∆Q. In the initial step, the increment in the network modularity if
communities i and j are joined is:
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∆Qi j =

{
1

2E −
sis j
(2E)2 , if i and j are connected.

0, otherwise.
(19)

We can stop the merges when the network configuration reaches its maximum
modularity using the following heuristics: once we find a negative increment ∆Qi j < 0
during the modularity optimization process, the maximum global value associated to
the network modularity has been reached and subsequent merges cannot increase the
modularity anymore. This nice property enables us to stop merging communities once we
find a negative ∆Qi j. The intuition of choosing the configuration in communities in which
the modularity is maximal is because the modularity measure is a proxy of how good the
network division is in terms of the existence of communities. Therefore, the network with
maximal attainable modularity will have the most well-defined communities in relation to
other candidate configurations.

4 Data

Along this paper, we use a unique database with banking supervisory data used
by the Central Bank of Brazil.3 In our analyses, we consider that the banking system is
formed by banking conglomerates and individual banking institutions that do not belong
to conglomerates, to which we will refer indistinctly as banks4. Data from this database
comprise banks’ individual characteristics, for instance, their capitalization and total assets,
and their operations, e.g, the domestic interbank ones.

Our sample has quarterly observations, with end-of-quarter data along the period
from March 2010 to December 2014. For each of these dates, we analyze the network of
interbank exposures that consists of a directed network in which the vertices are banks5 and
the links between a pair of banks (i, j) are totals of bank i’s investments (or exposures) in
bank j’s unsecured instruments6. We aggregate these exposures regardless of the instrument
type or time to maturity, as the methodology that we employ only uses information on
total exposures. In a directed network, we can have a pair of banks mutually exposed,
however, we do not net out these exposures, since compensation is not legally enforceable
in the Brazilian jurisdiction. Additionally, for some of the analyses, we categorize banks

3The collection and manipulation of the data were conducted exclusively by the staff of the Central Bank
of Brazil.

4These banks may be universal, commercial, investment or savings ones.
5We do not include intra-conglomerate exposures into the analysis.
6The most important of these instruments, in volume, are interfinancial deposits, bank deposit certificates,

interbank onlending, credit and credit assignment operations, instruments eligible as capital, real state credit
bills, financial letters and swap operations, which represent about 95% of the total.
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with respect to their sizes (large, medium, small and micro) following the methodology
presented in the second Financial Stability Report of 2012 by the Central Bank of Brazil
(BCB (2012)).

Table 1 presents average network topological features along the period of analysis.
The banking system has, on average, 119 banks. The network is sparse, with a density
around 0.057, and presents a structure with money centers. The average network degree,
6.69, is unevenly distributed along banks with different sizes, as can be seen in Fig. 1b,
which shows that large banks have a higher average in-degree (number of creditors). The
moderately negative assortativity provides evidence that small banks connect preferentially
with large ones. This evidence is supported by a small network diameter. A network
diameter of 4 means that the shortest path from any bank to any other one has at most 4
steps along the interbank network.

Table 1: Average network measures from Mar 2010 to Dec 2014.

Variable Mean Std Dev
Number of banks 119 2
Average degree 6.69 0.55
Density 0.057 0.006
Assortativity -0.37 0.03
Diameter 4 0

Figure 1 also provides information on variables that are relevant to the stress trans-
mission mechanism under study. From a bank-level point-of-view, we compute the stress
induced by a loss suffered by a given bank as the ratio of that loss to the bank’s capital
buffer. Figure 1a shows that, on average, banks are well-capitalized to resist to such losses
even if all of their exposures are directed to a single borrower. In this model, the stress
suffered by a bank is transmitted to its creditors, that is, a loss suffered by a bank affects its
potential ability to repay its debts. Figure 1b shows that large banks propagate stress to a
greater number of creditors, which will receive a larger impact if they are less capitalized.
However, shocks produced or propagated by large banks can result in comparatively low
levels of stress if their creditors have enough capital buffer to absorb them.

5 Results and discussions

In this section, we compute the expected systemic stress of the banking system
and its systemic stress amplification from March 2010 to December 2014. To do so, we
compute, for each quarter along the sample, the impacts and DPs of individual banks,
groups of two and of three of them, and we use (6) and (16) to compute the proposed
systemic measures. We also present heuristics to identify communities of banks that are
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Figure 1: Aggregate interbank exposures (unsecured assets) and capital buffer shares in the banking system’s
total assets (Figure (a)) and average number of creditors by bank size at the end of each year (Figure (b).)

most likely to jointly default and compute the expected impact for each of these identified
communities. We also relate how these bank communities can support in systemic bank
surveillance.

5.1 Evaluation of the financial system stress measures

To compute the proposed systemic risk measures, we first evaluate the DPs in a
1-year horizon of single banks that participate in the interbank market using the Merton
structural model as discussed in Appendix A. We use the following parameters:

• Adjusted total assets (A).7

• Distress barrier (DB). Due to the unavailability of time to maturity data of total
liabilities (T L), we assume that they are predominantly short-term debts (ST D = 0.7)
with a significant long-term debt (LT D = 0.3) share. Assuming8 α = 0.5, which
models the proportion of early-redeemable long-term debts, we find that the distress
barrier is given by DB = ST D+αLT D = 0.7T L+ 0.5× 0.3T L = 0.85T L. For
robustness check, we also compare the sum of all single banks expected impacts for
DB ∈ {0.8T L,0.9T L,1.0T L}.

• Interest rate (r). We use the interbank interest rate CDI.

• Assets volatility (σA). We use the annualized standard deviation of the log returns of
the adjusted total assets, i.e., log

(
At

At−1

)
.

7The adjusted total assets comprises total assets after netting and reclassification of the balance sheet
items. Netting is performed on the following balance sheet items: repurchase agreements, interbank relations
and relations within branches, foreign exchange portfolio and debtors due to litigation. Reclassifications are
made within foreign exchange and leasing portfolios.

8The selected value is consistent with the Moody’s - KMV CreditEdge approach.
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• Horizon (T ). We compute the default probabilities in a 1-year horizon using monthly
aggregated balance sheet data. We choose a 1-year time horizon for the reasons
pointed in Appendix A.

Table 2: Overall expect impact of all single banks. We report the results as a fraction
of the total assets of the interbank market. For robustness, we use different values for
the distress barrier. Results are reported on a yearly basis using December as the
reference month.

YEAR DB/TL

0.80 0.85 0.90 0.95 1.00

2010 0.0471 0.0554 0.0666 0.0840 0.1138

2011 0.0254 0.0319 0.0403 0.0519 0.0695

2012 0.0189 0.0273 0.0398 0.0585 0.0887

2013 0.0160 0.0232 0.0345 0.0525 0.0831

2014 0.0065 0.0092 0.0134 0.0201 0.0310

Initially, we compare the overall expected impact of all single banks using different
ratios of the default barrier to total liabilities. In this way, we can better assess the influence
that a particular choice of the DB/T L ratio would have on results. Table 2 reports the
results using DB = 0.80 T L to 1.00 T L. For DB = 0.85 T L, the average sum of expected
impacts reported in the table is 2.94% of the interbank market total assets. From Table
2, we see that the assumption of higher DB/T L ratios results in much higher expected
impacts, with a maximum of 11.38% when DB = 1.00 T L.9 The larger the short-term or
early-redeemable debts are, the larger will be the amount of assets to be fire-sold in case
of distress, which, for illiquidity reasons, accelerates increases in losses, and therefore, in
DPs. From a numerical point-of-view, the distance to default decreases. As this distance
decreases, it becomes easier that a fluctuation on the total assets amount reaches the distress
barrier, which can be translated into a higher DP (see (25)).

Next, we compute the expected systemic stress for the banking system in the period
from March 2010 to December 2012. Figure 2 presents the upper, medium-term and lower
estimates for the expected systemic stress computed for the period using the procedures
described in Section 3.1.2. These procedures use DPs computed for single banks and
for pairs of them, and estimates for DPs of intersections of default events of three banks,
assuming that DPs of 4-bank intersections are zero.

The medium-term estimate is related to a plausible union probability and is closer to
the lower estimate. The period of the sample corresponds to the post 2007 global financial
crisis. In Brazil, this period began with large foreign capital inflows that resulted from

9When DB = 1.00 T L, the FIs’ total liabilities are entirely composed of short-term or early-redeemable
debts.
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Figure 2: Expected systemic stress in a 1-year horizon, computed using 3-bank joint-DPs, upper, medium-
term and lower estimates.
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Figure 3: Expected systemic stress amplification, computed using 3-bank joint-DPs, upper, medium-term
and lower estimates.
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the unconventional monetary policies adopted by the US, by one side, and by liquidity
issues faced by some of the medium- and small-sized banks, by the other. That increase
in the capital inflow raised the liquidity available to banks, that invested in the interbank
market, increasing their exposures. However, to counter the liquidity excess, the central
bank raised the reserves requirements, which reduced the systemic stress until the end of
2011, when the reserves requirements were lowered to create more favorable conditions to
banks that were suffering from lack of liquidity. From September 2012 to the end of the
sample, expected systemic stress decreased, the same happening to the boundaries of the
interval around the measure. We compare expected systemic stress with systemic stress
amplification in Figure 3. Both have peaks in the end of 2010 and in the middle of 2012.
However, the amplification grows in the second half of the sample while the expected
stress does not.
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Figure 4: Approximations for the expected systemic stress in a 1-year horizon, using only the DPs of
individual banks (1-term), using also 2-bank joint DPs (2-term), and using additionally 3-bank joint DPs
independent-event estimates and medium-term estimates.

In Figure 4 we compare successive approximations of the expected systemic stress.
We present approximations using the first term, the first two terms and the first three terms
using the medium-term estimate of the probability of the intersections of three events in the
third term of (6). We also compute an approximation with three terms of (6) considering
that the banks default events are independent, that is, an approximation in which the
probabilities of the intersection of two and three events are computed as the product of the
probabilities of the corresponding single events. The chart shows that the 1-term estimate
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yields the highest results, and that the 2-term one yields the lowest, as expected. The
3-term estimates yield intermediary results. We note that the 3-term independent estimate
is overestimated, as the union probability computed from these three terms is way above 1
along all the period. This is a reason for this estimate being superior to the medium-term
estimate, which corresponds to a union probability in the interval [0,1]. Therefore, given
this caveat, it would be necessary to employ the same approach adopted to compute the
medium-term estimate of the expected systemic stress, using (12).

Stress amplification, both for single banks and the banking system, measures the
additional stress in the banking system that results from a unit of initial shock applied.
To see what this measure conveys for different levels of initial shock applied to a single
bank or to all the banks in the system, lets suppose initially that we change the sum of the
liabilities of a given bank to its counterparties keeping the proportionality between them,
and that the liabilities and other characteristics of the other banks remain fixed. Then,
stress amplification remains constant, regardless of the shock level, unless there is one or
more banks that default. In that case, stress amplification decreases. This is so because
stress propagates from a bank i to the bank j exposed to i according to the proportionality
factor Wi j = min(1,A ji/E j) (see (1)), thus if bank j defaults due to bank i, Wi j = 1
regardless of A ji being larger or not. Therefore, for a single bank, stress amplification
remains constant or decreases as the initial shock increases. As for the systemic stress
amplification, as the initial shock applied to each bank of the banking system increases,
amplification also increases. This is so because to increase proportionally the initial shock
applied to all banks, we must increase all Ai j in the exposures matrix. Figure 3 conveys
that, in general, capitalization levels have been kept proportional to bank exposures, at
least for the counterparties of banks with largest expected stress. The coincidence of peaks
in 2010 and 2012, for figures 2 and 3 convey that they were related to increases in bank
exposures. The decrease in Figure 2 after June 2012 is due to decreases in the DPs of the
relevant banks, that is, those with highest expected stress.
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Figure 5: Expected impact for individual banks by bank size (Figure (a)) and bank size distribution by level
of expected impact (Figure (b).)
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Figure 6: Stress amplification for individual banks by bank size (Figure (a)) and bank size distribution by
level of stress amplification (Figure (b).)

We also identify the most relevant banks both for the computation of the expected
systemic stress and for the computation of stress amplification. To do that, we gather data
on the additional stress related to the default of single banks and on the corresponding
stress amplification for all the periods of the sample, showing results in Figures 5a and
6a. Regarding expected impact, we divide the sample into levels according to this variable
and find that only medium-sized banks fall into the largest level, whereas in the next lower
level, we find mostly small-sized banks. There is a significant share of large-sized banks
with expected impacts below 10−5TA. We explain that by the diversification of investments
along different counterparties. Results in Figures 5 and 6 also reflect the distribution of
banks from the sample along size categories: large banks are 8.2%, medium-sized, 14.7%,
small-sized, 36.1%, and micro, 41.0% of the total number of banks, on average. In Figures
6a and 6b, we see that banks that present the higher stress amplification are small and
micro-sized. Although these banks produce a high stress amplification, this is far less
relevant than the stress produced by large banks, which have less amplification, but much
higher initial shock. A reason for a higher stress amplification could be a mix of low
diversification and more leveraged counterparties.

5.2 Systemic group surveillance

In this section, we apply our strategy to identify bank communities in the Brazilian
interbank network. These identified communities can potentially serve as stress-testing
scenarios and hence can support regulators in the task of financial surveillance.

Since we form the network in which links denote pairwise joint DPs of banks, we
first remove those links that do not have significant expected potential losses. Figure 7
illustrates how the network density behaves as we vary the sparsification parameter σ .
Note that if we do not apply any filtering procedures, the network density is 86%, density
in which the existence of well-behaved communities is not possible. For small values of σ ,
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we already see large declines on the network density, suggesting that the great majority
of the links does not convey significant expected potential losses. In the other extreme,
we see that 0.4% of the links generate expected potential losses amounting to more than
100 million BRL. Recall that a large or a small expected potential loss between i and j,
EPLi j, may be due to suitable combinations of the pairwise joint DP of i and j, P(Ei∩E j),
and the expected systemic stress of the financial system should i and j default as an initial
shock scenario.
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Figure 7: Behavior of the network density as σ , the sparsification parameter, varies. In the x-axis, we use
60 log-spaced values of σ in the interval [0,108].

Inspecting Fig. 7, we choose the sparsification values σ ∈ {105,106,107,108}, thus
assuring sparseness of the network.10 Figures 8a and 8b portray the maximum modularity
of the network and the associated optimal number of communities for the entire studied
period when we apply the agglomerate community detection algorithm. Besides the
discussed values of σ , we employ the full network without sparsification for robustness.
First, it is clear that the full network does not have evident community structures, as
the modularity is near zero. Therefore, the community structure in the full network is
statistically insignificant and thus resembles a random network. As we increase σ , we
start removing the pairwise connections that have small expected systemic impacts. For
values of σ ∈ {105,106,107,108}, we can see that the network modularity significantly
increases, showing that the community structure becomes apparent and thus the network
departs from a random model. Recalling that a modularity greater than 0.3 already gives
strong evidence of well-defined communities, we conclude that the Brazilian network has
stable community structures in which the members have significant expected systemic
stress after 2013. These bank communities are good candidates for a systemic group

10As a rule of thumb, we can roughly consider networks as sparse when their densities are below 20%.
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surveillance, because community members are strongly interrelated by significant pairwise
joint DPs and also have non-negligible expected potential losses. We also observe that the
optimal number of communities in the community detection process is somewhat stable,
oscillating roughly between 3 and 4 communities, suggesting a somewhat persistence over
time. Considering that we are only maintaining those connections with significant expected
systemic losses in the network and that banks engage with few other counterparties to
establish their main financial operations possibly due to monitoring costs and relationship
lending, we expect that the most important connections in the network will persist over
time. Thus, we also expect that the identified communities will be stable.
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Figure 8: Maximum modularity and the associated optimal number of communities in the community
detection applied on the sparsified network of pairwise joint DPs. For robustness, we employ several
thresholds σ in the network sparsification process.

In order to get a gist as to how the communities are disposed in the sparsified network
of pairwise joint DPs, Figure 9 portrays the network in December 2014 using three different
sparsification parameters: σ ∈ {106,107,108}. For clarity, we do not exhibit singleton
vertices. Note that the number of vertices with connections effectively reduces as we
increase σ . In special, there are 54, 43, and 21 banks when σ assumes the values of 1, 10,
and 100 million BRL, respectively. We note that members of the same community share
more link weights with each other than with other communities. An interesting feature is
of the resulting network topology in Fig. 9c. Besides being clustered in communities as we
can see from its significant modularity of 0.62, the network that we sparsify with σ = 108

resembles a scale-free network, with the existence of few hubs and several periphery or
terminal vertices. Recalling that links in the network denote probability of joint defaults,
this configuration turns out to be potentially harmful as it is one of the networked structures
that can quickly spread information to the remainder of the network, as hubs effectively
shorten network paths. In contrast, clustered networks that are not scale-free, such as those
in Figs. 9a and 9b, information can only efficiently spread among members of the same
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community, not among those of different communities.

(a) σ = 1 million BRL (b) σ = 10 million BRL

(c) σ = 100 million BRL

Figure 9: Visual representation of the community detection results applied on the filtered network of pairwise
joint DPs in December 2014. The vertex color or shape denotes its community. We use different thresholds σ

in the sparsification process and do not exhibit singleton vertices.

One of the advantages of using an agglomerate community detection algorithm is that
we can evaluate how communities are formed. Since in the method of Clauset et al. (2004)
we join the pair of communities that gives the maximum modularity increment, those
communities that are first joined are central to the resulting community than those ones that
are incorporated to the same community later. We can check how these joins take place
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by inspecting a dendrogram. A dendrogram is a tree diagram employed to illustrate the
orderly arrangement of the communities produced by the hierarchical community detection
procedure. The vertical axis symbolizes the iterations of the algorithm. In contrast, the
horizontal axis shows the communities joined so far. Figure 10 shows the dendrogram of
the community detection process when we consider the network in December 2014 with a
sparsification parameter σ = 1 million BRL. At the initial iteration, note that each vertex or
bank is a community itself. In the first iterations, the method merges the communities that
are formed of banks 22 and 47, respectively. Followed by that, the algorithm again merges
the resulting community made up of those two vertices with the community of vertex 23.
This process goes on until we are left with a single giant community corresponding to the
network itself. From a systemic point of view, it is important to monitor core connections
inside the community, because:

• they are the most prone of happening, because they normally encode large joint
probabilities between two banks; and

• they have representative expected potential losses.

Returning to our example, in the community formed in the first two steps of the
algorithm with vertices 22, 23, and 47, the link between 22 and 47 is more central than
that between 23 and that same community. In this way, the dendrogram can effectively
rank those connections that should receive more attention in each community. In addition,
dendrograms are useful because we can readily partition the network into communities by
a horizontal cut at any point in the vertical axis. By drawing a horizontal line at iteration 60,
for instance, we get four communities, which is the number of communities for which the
modularity is maximal. Figure 8b represents the number of communities that corresponds
to the maximum modularity values computed for each date. Therefore, we can easily adjust
our systemic view of the network by simply selecting the number of desired communities
and by looking at the resulting communities in the dendrogram. For systemic group
surveillance, looking at those communities with maximum network modularity is a good
strategy, as the corresponding network partition presents more well-defined communities
than the other partitions.

We now study the community composition and the additional stress that each one
inflicts when the entire community defaults. The task of identifying these communities is
already an important feature to regulators narrow their surveillance efforts in the financial
system. Here, our focus is on showing the importance that non-large entities play in
propagating stress when they are analyzed in a collective manner. We use as baseline the
network of joint DPs in December 2014 with σ = 1 million BRL (see Fig. 9a). Table
3 reports the additional stress caused by each uncovered community by the community
detection algorithm. In these filtered networks, most large banks do not appear mainly
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Figure 10: Dendrogram showing the results of the agglomerative community detection process applied on
the interbank network in December 2014 and σ = 1 million BRL. At the start, every vertex is a community
itself. As the iteration progresses, we join those communities in which the increment in the modularity is

maximum.

because their DPs are very small. Thus, during the sparsification process, their financial
operations with other counterparties are filtered out as they do not have large expected
systemic losses. In special, we only note the existence of three large banks in the community
depicted with red circle-shaped vertices. If we simulate a default on these three large banks,
we get an additional stress of 0.039. However, if we default all of the members of that
same community, including the three large banks, we obtain an additional stress of 0.106.
Thus, though the other banks in the community are non-large, they significantly contribute
to increasing the additional stress that the financial system can potentially suffer.11 This
point highlights the importance of non-large entities when analyzed in a collective manner.
We also note that the community that represents the magenta triangle-shaped vertices has
additional impact comparable to that of those large banks, even though no large banks are
members of that community.

11Recall that we measure financial stress rather than monetary losses. We can conceive financial stress as
potential losses that may or may not materialize at all.
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Table 3: Evaluation of the additional and initial shock stress per each community encountered in December
2014 with σ = 1 million BRL (see Fig. 9a).

Stress Measures Community Composition (Bank Size)

Community DebtRank Initial Shock Micro Small Medium Large
Circle 0.106 0.129 7 9 3 3

Square 0.017 0.024 9 3 1 0
Diamond 0.024 0.026 5 5 0 0
Triangle 0.031 0.056 4 3 2 0

6 Conclusions

In this paper, we develop systemic risk measures for the Brazilian interbank market
by using a novel network-based framework that modulates the impact effects that we obtain
from stress measures. The framework relies on a network approach because networks are
able to capture topological aspects of the data relationships, which may help in extracting
nonlinear features of the risks embodied into the FIs relationships. Moreover, the network
representation is able to unify the structure, dynamics, and functions of the system that
it represents. It does not only describe the interaction among FIs (structure) and the
evolution of such interactions (dynamics), but also reveals how both of them—structure
and dynamics—affect the overall function of the network.

Applying our framework for a 1-year horizon, we find that medium-sized banks are
the main contributors for the expected systemic risk in the Brazilian interbank market,
rather than large-sized banks. The expected systemic stress of large banks is largely
reduced by virtue of their low DPs. In contrast, medium-sized banks turn out to have larger
expected systemic stress because they have non-negligible default probabilities and also
inflict moderate additional stress in the financial system.

We also devise novel heuristics for designing stress tests that are feasible and relevant
and thus can support financial surveillance. To address the feasibility property, the method
relies on finding bank communities whose members present significant pairwise joint
default probabilities. To account for the relevance property, the method only considers
pairwise connections in which the default of the pair of FIs produces large potential losses.
We apply this methodology in the Brazilian interbank market and find that a large portion of
the identified communities is composed of non-large banks. We then select as stress-testing
scenarios the joint default of all members of a same community. We find that these bank
communities can inflict large additional stress in the financial system. Our procedure
suggests that, although size and interconnectedness matters, it is crucial to evaluate the
emergence of these bank communities, which may also be a trigger for systemic risk.

These findings are based on a framework in which contagion is driven by direct
exposures between banks, and initial shocks are bank defaults. This framework can be
extended to consider different types of initial shocks and the same contagion mechanism,
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for instance, considering shocks originating from banks’ exposures to the same assets or
counterparty types. Another possibility is to study different contagion channels taking
into account that some of them may significantly amplify the initial shocks. These
investigations are left for future work, that, after completion, will contribute to a more
complete identification of the risks incurred by the banking system under study.
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Appendix A Individual default probabilities

We use the Merton (1974)’s structural model to estimate the DP of individual banks,
which models credit risk using the Contingent Claim Analysis12. The intuition of this
model is to consider the bank’s assets as the underlying asset of an European call option,
with strike price equal to its obligations and time to maturity T . If the bank defaults, equity
holders receive nothing, because the bank does not have enough resources for repaying its
obligations. Otherwise, if it does not default, equity holders receive the difference between
the values of assets and liabilities. The model also considers that the bank defaults if
its assets value falls below its distress barrier (DB), which is not necessarily equal to its
obligations’ value, due to liquidity shortages, contract breaches and other similar problems.
We compute the DB based on the KMV (2001) model, using accounting data, as:

DB = ST D + αLT D (20)

in which ST D and LT D stand for the short- (maturity ≤ 1 year) and long-term (maturity
above 1 year) liabilities, respectively, and α is a parameter between 0 and 1 that proxies
the share of long-term liabilities of a bank subjected to early redemption in case of stress.
Following Moody’s-KMV13, we fix α = 0.5.

Applying these definitions to the model proposed in Black and Scholes (1973), we
compute the option’s payoff received by equity holders as:

E = max(A N (d1)−DB e−rT N (d2),0) (21)

In (21), A is the assets’ value, r is the risk-free interest rate, N (·) is the cumulative
normal distribution,

d1 =
ln( A

DB)+(r+ σ2
A

2 )T

σA
√

T
(22)

and

d2 =
ln( A

DB)+(r− σ2
A

2 )T

σA
√

T
, (23)

in which σA denotes the assets volatility.
From Black and Scholes (1973), it is possible to obtain the equation that relates

assets and equity volatilities:

12Contingent Claim Analysis is a generalization of the option pricing theory presented in Black and
Scholes (1973).

13According to Souto et al. (2009), Moody’s-KMV uses α in the range 0.5−0.6 based on the calibration
of their model. This intends to match model and historical probabilities of default.
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σE = N (d1)
A
E

σA. (24)

With information on the market value and on the equity volatility, and on the book
value of liabilities, it is possible to estimate the implied value for A and σA by solving the
system of equations displayed in (21) and (24).

The time to maturity T , usually assumed to be 1 year, is the horizon for which
we compute DP. We consider that a 1-year time horizon is consistent with i) the usual
assets’ classification into short-term and long-term liabilities that the model requires, and
ii) the time given to banks to adapt to raises in capital.14 We assume that the bank’s asset
values are log-normally distributed, which, according to Crouhy et al. (2000), is a robust
assumption. We also consider that investors are risk-neutral, that is, they demand as return
rate the risk-free return rate r, which is lower than that required by risk-averse investors.
This assumption results in conservative (higher) DP estimates. Therefore, the DP of a bank
in a time horizon T , computed in t = 0, is given by:

DP = P(AT ≤ DB)

= P(lnAT ≤ lnDB)

= N

− ln( A0
DB)+(r− σ2

A
2 )T

σA
√

T


= N (−d2), (25)

in which AT is the banks’ total assets at time T . We also compute the distance to distress
(D2D) for a risk-neutral environment, as:

D2D =−d2, (26)

which is the distance of the bank’s assets value to the distress barrier in t = 0, measured in
assets value’ standard deviations.

Appendix B Pairwise default probabilities

We compute joint DPs for each pair of banks using the consistent information
multivariate density optimizing (CIMDO) methodology (Segoviano (2006)). We first
select a prior bivariate distribution that represents our initial belief on the asset values,
which we choose on the grounds of theoretical arguments and economic intuition, that

14For instance, when capital requirements increase, under the countercyclical capital buffer framework of
Basel III, banks have one year to comply (BCBS (2010)).
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may not necessarily fully comply with the empirical observations. Then, the main idea of
the methodology consists in using Kullback (1959)’s cross-entropy framework to derive
a posterior distribution from sucessive adjustments of the selected prior distribution that
complies with the empirically observed individual DPs and distances to distress.15 Finally,
we use this posterior bivariate distribution to compute the joint DPs for the pair of banks.

The CIMDO methodology assumes that the premises of the structural approach
hold, that is, that a bank’s underlying asset value evolves according to a stochastic process
and that the bank defaults if its assets value falls below a distress barrier, as exposed in
Appendix A. Additionally, it considers that the bank i’s logarithmic asset values xi are
normally distributed and standardize these values so that xi ∼N (0,1), with xi = 0 in
t = 0. It also applies this standardization to distances to default D2Di and distress barriers
DBi. Finally, it considers that the default region is in the upper part of the distribution16

and that the logarithmic asset values xi and x j are correlated according to a time-invariant
correlation structure ρ . The CIMDO methodology derives, for the pair of banks i and j,
the bivariate distribution function of xi and x j from a theoretically-assumed bivariate prior
distribution and individual banks data DPi,DBi,DPj and DB j. According to Segoviano
(2006), calibrating the parametric prior distribution using these data does not generally
result in an optimal representation of the true underlying distribution function. Thus, he
proposes using the Kullback (1959)’s cross-entropy minimization procedure to recover
the distribution that is most consistent with the banks’ DP and DB constraints, while
minimizing the entropic distance of that distribution in relation to the prior distribution.
We refer to this process as prior distribution update scheme with empirical data to obtain a
posterior distribution.

To compute the bivariate posterior distribution density through a cross-entropy
minimization procedure, we solve the following optimization problem:

p̂(xi,x j) = argminp(xi,x j) C[p,q] (27)

subject to: ∫ ∫
p(xi,x j)1{DBi,∞}dxidx j = DPi, (28)∫ ∫
p(xi,x j)1{DB j,∞}dx jdxi = DPj, (29)∫ ∫
p(xi,x j)dxidx j = 1, (30)

p(xi,x j)≥ 0. (31)

15See Appendix A for a detailed discussion on how to evaluate individual DPs and distances to distress
16This happens because after standardization, D2Di > 0 when DBi < 0
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in which C[p,q] stands for the entropic distance between the posterior and prior distribu-
tions p and q, respectively. We evaluate C[p,q] as follows:

C[p,q] =
∫ ∫

p(xi,x j) ln
[

p(xi,x j)

q(xi,x j)

]
dxidx j. (32)

In the optimization problem above, Equation (27) is the objective function that
minimizes the entropic distance C[p,q], Equations (28) and (29) are restrictions related to
marginal default probabilities of banks i and j in t = 0, and Equations (30) and (31) ensure
that the solution of optimization problem, p̂(xi,x j), is a valid density, i.e., that it adds to 1
over its support and that it satisfies the non-negativity condition. Besides, p̂(xi,x j) is the
estimate of the bivariate posterior distribution density being computed and 1{DBb,∞} is an
indicator function that identifies the default region of bank b, considering that the default
region is in the upper part of the distribution. For bank b, 1{DBb,∞} = 1 if xb ≥ DBb, being
zero otherwise.

Solving the problem using calculus of variations, we obtain the following closed-
form equation for the posterior bivariate density:

p̂(xi,x j) = q(xi,x j)exp{−
[
1+ µ̂ + λ̂11{DBi,∞}+ λ̂21{DB j,∞}

]
}. (33)

In the equation above, λ̂1, λ̂2 and µ̂ are Lagrange multipliers. To find them, we
numerically solve the following 3-equation system:

∞∫
−∞

∞∫
DBi

p̂(xi,x j)dxidx j = DPi,

∞∫
−∞

∞∫
DB j

p̂(xi,x j)dx jdxi = DPj,

∞∫
−∞

∞∫
−∞

p̂(xi,x j)dxidx j = 1,

(34)

in which we use the integrals of (33), the restrictions in (28)–(30) and the integrals
computed for the prior q(xi,x j) to arrive at the previous system of equations.

The integrals in (34) can be easily computed as we employ indicator functions in
(33) that are constant along continuous intervals.

In this paper, we follow the steps below to compute the pairwise default probabilities
for banks i and j:
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• We compute the empirical data17 for both banks: DPi, DBi, DPj and DB j.

• We compute the correlation coefficient ρ of banks i and j log-returns along the
previous year using monthly data, following Segoviano and Goodhart (2009) and
Guerra et al. (2016).

• Following Guerra et al. (2016), we adopt a bivariate t-distribution with 5 degrees of
freedom and correlation ρ as the prior distribution.

• We find the Lagrange multipliers λ̂1, λ̂2 and µ̂ solving the system of equations in
(34).

• We compute the joint default probability DPi j:

DPi j =

∞∫
DBi

∞∫
DB j

p̂(xi,x j)dxidx j (35)

Appendix C Network modularity

The modularity measure quantifies how good a particular division of a network in
communities is (Newman and Girvan (2004)). Communities are subgroups of vertices
within which the connections are dense but between which they are sparser. Technically,
the modularity captures the fraction of edges that falls within communities minus the
expected value of the same quantity if we rearrange edges at random, conditional on
the given community. Mathematically, we compute modularity in weighted networks as
follows (Newman (2004)):

Q =
1

2E ∑
i, j∈V

(
Ai j−

sis j

2E

)
1{ci=c j}, (36)

in which V is the set of vertices in a graph; E represents the total edge weight inside
the network; si stands for the strength (weighted degree) of vertex i; ci is the community
of vertex i; and Ai j is the edge weight between vertices i and j. The indicator function
guarantees that we only take into account links inside a community. We evaluate the
quantities si and E using the following expressions:

17Considering that the CIMDO methodology uses DB and D2D data standardized to an assets value
distribution x∼N (0,1), and that Segoviano (2006) defines the default region as being in the upper part of
the distribution, we have that DB =−D2D. To associate a default region in the upper part of the distribution
with a positive D2D, we simply take the opposite sign of the DB value. That is possible because we use a
symmetric prior.
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si = ∑
j∈V

Ai j, (37)

E =
1
2 ∑

i, j∈V
Ai j =

1
2 ∑

i∈V
si. (38)

Inside the summation in (36), we remove the edge weights that are expected to
occur due to randomness, using a random network model. Therefore, the modularity
effectively reflects the excess of concentration of links within modules in relation to a
random distribution of links.

The modularity is a global network measure that ranges from 0 to 1. When the
modularity is near 0, it means that the network does not present community structure,
suggesting that the links are disposed at random in the network. As the modularity
grows, the community structure gets more and more defined, that is, the mixture between
communities gets smaller and therefore the fraction of links inside communities is larger
than that between different communities. Empirically, modularity values larger than 0.3
already indicate strong evidence of well-defined communities.
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