Optimal Margining and Margin Relief in Centrally Cleared Derivatives Markets

Radoslav S. Raykov

Bank of Canada
Financial Stability Department

27 June 2014

1The views contained in this presentation are the author’s and do not necessarily represent the views of the Bank of Canada.
The New Financial Landscape: Central Clearing

- The G-20 reforms require that standardized OTC derivative transactions should be centrally cleared by clearinghouses, also known as central counterparties (CCPs).
- CCPs are regulated entities with proper risk management standards, using many risk-mitigation measures such as collecting collateral (margin).
- A policy challenge posed by clearinghouses is that their collateral requirements can rise sharply in times of stress, reducing market liquidity and exacerbating economic downturns. (Brunermeier and Pedersen, 2009)
- To address this, international regulation requires clearinghouses to reduce the procyclicality of margin requirements (PFMI §3.6.10)
- Today I am going to talk about one of the more common approaches, known as through-the-cycle (TTC) margining.
Through-the-cycle Margining

- Regulatory authorities are concerned with procyclical margins because they believe jumps in margin requirements inhibit trading (markets freeze).
- Their proposed solution, therefore, is to smooth the margin requirement through the cycle: undercollect in bad times, overcollect in good times.
Why can TTC Margining be Challenging?

- Primarily, because it implies higher mutualized risk in times of stress: credit risk not collateralized by margin is shared through a common clearing fund.
- More risk sharing distorts incentives, could amplify risk-seeking behavior.
- Based on these concerns, member banks could either reject TTC margining or stop trading. Both are a challenge to regulators.
- Example: In 2008, a certain derivatives CCP proposed to its members a form of TTC margining, which was rejected with a majority vote from the members’ Risk committee.
- This example runs contrary to the intuition of regulatory authorities.
- This paper offers some answers why.
Main results

- TTC margining in stressed markets can increase as well as reduce trading activity; the outcome depends on financial market volatility and on the clearinghouse members’ risk aversion.

- When banks are not too risk averse, in high-volatility periods they are more concerned with collateral cost than with mutualized risk, and are willing to take advantage of margin relief.

- When banks are more risk averse, they may not want to take advantage of TTC margin relief, even when it is socially optimal. Risk considerations outweigh lower collateral costs.

- This creates a challenge for policy-makers: banks may reject “smoothed” TTC margins.

- Suggested policy tool to overcome the challenge: increase the opportunity cost of default (for example: non-conforming member penalties, deeper collateral haircuts).
Model: Economic Environment

- Economic environment similar to Santos and Scheinkman (2001)
- Two groups of risk-averse banks face uncertainty about their (random) endowments in a consumption good, and trade in a stylized derivative contract to hedge that uncertainty
- Two states of nature, s_1 and s_2, and 3 possible endowment outcomes: $y > x > z$. One bank gets x for sure, the other gets lottery between y, z
Model: Central Counterparty

- Trading takes place through a central counterparty, which sets a margin requirement $\Phi \in [0, 1]$
- A bank can take either a positive (long) or a negative (short) position θ in the contract, pledging $|\theta|\Phi$ as collateral.
- In the event of default, $|\theta|\Phi$ is the minimum delivered amount to the CCP.
- Default losses accrue to the CCP, which redistributes them across the large number of remaining survivors.
- To finance the cost of defaults, the CCP delivers $K < 1$ per dollar of obligation to banks.
- Think of K as the CCP’s delivery rate, net of expected clearing fund losses ($1 - K$). It is a measure of the protection provided by the CCP.
- The relationship between the delivery rate and collateral plays a key role for the results that follow.
Model: Concavity

- A key aspect: the tradeoff between margin and clearing fund is not linear.
- Low margin requirements are likely to incentivize members to take on more risk outside the CCP, resulting in higher default probabilities for members (moral hazard).
- As a result, more uncollateralized risk is held at the clearinghouse.
- Since clearinghouses mutualize credit risk that is not collateralized, this implies more risk sharing between clearing members in times of stress.
- This is similar to how in insurance, accident probability is commonly assumed a decreasing, convex function of the deductible.
Model: Concavity

- Moral hazard implies that the probability π with which a member delivers fully its obligation to the CCP is increasing in the margin requirement Φ.
- Or equivalently, that the degree of protection K the CCP provides members is increasing, concave in the margin requirement Φ.

![Graph showing the relationship between $\pi(\Phi)$, $K(\Phi)$, and $1 - \pi$](image)

- $K(\Phi) = \pi + (1 - \pi)\Phi$
- $\pi(\Phi) = \text{concave in } \Phi$
- $\pi(0) = \pi$, $\pi(1) = \bar{\pi}$
- $\pi'(0) = \infty$, $\pi'(1) = 0$
Model

- Taking into account the $K(\Phi)$ relationship, each bank chooses an optimal trading position, θ, and an amount $D(\cdot)$ to deliver in each state x, y, z

$$\max_{\theta, D} EU = \frac{1}{2} \left[u(c_x) - \lambda \max\{-\theta - D(x), 0\} \right] + \frac{\pi}{2} \left[u(c_y) - \lambda \max\{\theta - D(y), 0\} \right] +$$
$$+ \frac{1 - \pi}{2} \left[u(c_z) - \lambda \max\{\theta - D(z), 0\} \right],$$

where

$$c_x = x - D(x) + \max\{\theta, 0\} K$$
$$c_y = y - D(y) + \max\{-\theta, 0\} K$$
$$c_z = z - D(z) + \max\{-\theta, 0\} K,$$

subject to the constraints

$$z \geq \max\{\theta, 0\} \Phi; \quad x \geq \max\{-\theta, 0\} \Phi;$$
$$D(y), D(z) \geq \max\{\Phi \theta, 0\}; \quad D(x) \geq \max\{-\Phi \theta, 0\}.$$
Proposition

The relationship between trading volume θ and margin Φ is non-monotonic.

a) Trading volume θ is increasing in margin Φ at low levels of margin and decreasing at high levels of margin.

b) There exists an interior level of margin $\Phi_M \in (0, 1)$ where trading position θ is maximal and where $(d\theta/d\Phi)|_{\Phi_M} = 0$.
Results

a) $|y - z| = \text{high}, \; R_A < 1/z$

b) $R_A > 1/z$

Proposition

a) Given sufficiently high volatility $|y - z|$, and sufficiently low absolute risk aversion $R_A < 1/z$, the bank-optimal margin is to the left of the volume-maximizing margin level ($\Phi_B < \Phi_M$).

b) Given and sufficiently high absolute risk aversion $R_A > 1/z$, the bank-optimal margin is to the right of the volume-maximizing margin level ($\Phi_B > \Phi_M$).
Privately vs. Socially Optimal Margin

- But where does the bank-optimal margin Φ_B fall with respect to the socially optimal margin Φ_S?
- Assume regulators want the margin at the socially optimal level
- Socially optimal includes spillovers (costs of default and benefits of trade)

Proposition

If the following conditions hold:

1) Risk aversion is sufficiently high so that $R_A > 1/z$.

2) The social benefit from trade exceeds the expected social cost of default on a per-dollar basis, so that $b > c(1 - \pi)(1 - \Phi)$.

Then there exists a sufficiently large value of $b > 0$ for which $\Phi_B > \Phi_S$.

- This is a challenge for policymakers. In this environment banks will either reject TTC margining, or stop using the CCP.
Policy Challenge

- Member banks often have substantial influence over the clearinghouse’s collateral policy.
- When the bank-optimal margin exceeds the socially optimal one, banks will reject TTC margining.
- Alternative policy tools are needed to motivate clearinghouse members to agree to smoothed margins in stressed periods.
- Something must compensate the banks for their increased mutual risk exposure through the clearing fund.
Suggested Solution

- Clearinghouses have significant ability to control how costly it is to default for a member.

- They can confiscate pledged resources, impose additional fines, force close out positions, apply deeper haircuts to collateral.

- Recall the “disutility from default” term in the bank’s EU function, \(\lambda \max\{\ell - D(x), 0\} \), where \(\lambda \) is the default penalty (the marginal disutility from a dollar defaulted)

- The parameter \(\lambda \), therefore, is under the CCP’s control and can be changed over the cycle.

- TTC margining increases bank risk exposures through the CCP’s clearing fund in times of stress, but increasing the opportunity cost of default \(\lambda \) mitigates risk-taking incentives, as default becomes more costly.

- Therefore increasing \(\lambda \) should help bring down the bank-optimal margin (banks agree to margin relief)
Suggested Solution

Proposition

Increasing the default penalty λ will motivate member banks to agree to margin relief (a reduction in Φ_B), provided that the bank’s non-default probability π is sufficiently elastic to changes in λ:

$$\pi'(\lambda) \geq \frac{1}{\lambda}.$$
Suggested Solution

- Suitably varying λ over the cycle may be the appropriate policy to mitigate the increased risk sharing that TTC margining causes in stressed periods.
- For practical implementation, the clearinghouse must have enough discretion to change λ.
- Communication with regulators is essential to get the right result:
 - Changes to risk management require regulatory approval
 - Recall that margin relief could depress trading if implemented without discretion
- TTC margining should not be implemented without a careful survey of market volatility and clearing members’ risk attitudes.