Coordination Failure & the Financial Accelerator

Oliver de Groot

Federal Reserve Board

August 11, 2014

Disclaimer: The views expressed are solely mine & do not necessarily reflect those of the Federal Reserve Board or its staff. All errors are mine alone.

Coordination problems are pervasive across credit markets

- Affects firms' access to finance when borrowing from multiple banks
 - Hertzberg, Liberti, & Paravisini (2011)
- Bankruptcy laws try to prevent disorderly (costly) liquidation of assets
 - Chapter 11 in U.S
- Liquidity dry ups in commercial paper markets
 - Penn Central bankruptcy 1970, LTCM crisis 1998, Enron scandal 2002
 - U.S. CPFF in 2009. No issuer defaulted on its debt obligations.
- Financial sector bank / credit runs
 - Northern Rock, Bear Sterns, Lehman Brothers
 - Pre-crisis increase in maturity transformation of shadow banking sector
 - Exposed many institutions to illiquidity (rollover) risk

Build model of maturity mismatch, illiquidity risk & credit cycle

- Model
 - Standard DSGE model
 - +
 - Coordination game among intermediaries in credit market
- Impulse responses
 - Significant amplification of technology shocks
 - Illiquidity shocks cause large contractions
- Policy experiment
 - Direct lending:
 - Weakly dampens effect of illiquidity shocks
 - Equity injections:
 - Strongly dampens contemporaneous effect of illiquidity shocks
 - Increases the persistence of illiquidity shocks

Literature review

- Empirical literature: Bagehot (1873), Jackson (1986), Bruche & González-Aguado (2010), Kacperczyk & Schnabl (2010), Blazy & Nigam (2011), Hertzberg, Liberti, & Paravisini (2011)
- **Coordination games:** Diamond & Dybvig (1983), Carlsson & van Damme (1993), Morris & Shin (2003, 2004), Rochet & Vives (2004), Goldstein & Pauzner (2005)
- Financial frictions: Bernanke & Gertler (1989), Carlstrom & Fuerst (1997), Kiyotaki & Moore (1997), Bernanke, Gertler, & Gilchrist (1999)
- The crisis & policy responses: Sargent & Wallace (1982), Gertler & Karadi (2011), Cúrdia & Woodford (2010), Reis (2010)

DSGE model with coordination problem in credit market

2 stylized features of coordination problems

- 1. Maturity mismatch on entrepreneurs' balance sheet Liquid liabilities (short-term debt) & illiquid assets (physical capital)
- 2. Multiple lenders, unable to coordinate their actions Intermediaries' decision: rollover or foreclose

2 effects on the system of equilibrium equations:

1. Drive endogenous wedge between return on capital & risk-free rate Illiquidity premium increasing in entrepreneurial leverage

$$E_t R_{t+1}^E \geq R_{t+1}$$

2. Entrepreneurs capture rents

Endogenous entrepreneurial net worth equation, N_{t+1}

- At end of t
 - Entrepreneurs homogenous, except for $N_{t+1}\left(e
 ight)$
 - Purchase $Q_{t}K_{t+1}\left(e\right)$ by borrowing $B_{t+1}\left(e\right) = Q_{t}K_{t+1}\left(e\right) N_{t+1}\left(e\right)$

• At start of t+1

- Aggregate state of world realized
- Entrepreneurs receive their idiosyncratic productivity, $\omega_{t+1}\left(e
 ight)$
 - *i.i.d.* across time & entrepreneurs with $E\left(\omega
 ight)=1$
 - If not foreclosed, transform capital from $K_{t+1}\left(e\right)$ to $\omega_{t+1}\left(e\right)K_{t+1}\left(e\right)$
- Intermediaries receive signal

$$\widetilde{\omega}_{t}\left(f,e\right) = \omega_{t}\left(e\right) + \varepsilon_{t}\left(f\right) \text{ where } \varepsilon_{t}\left(f\right) \sim U\left[-\overline{\varepsilon},\overline{\varepsilon}
ight] \& \overline{\varepsilon}
ightarrow 0$$

• In middle of t+1

- Intermediaries decide whether to rollover or foreclose
 - ullet Depends on signal received relative to some threshold, ω_t^*
 - Foreclosing intermediaries receive $K_{t}(f)$ & rent out $\gamma K_{t}(f)$

Intermediaries' payoffs

- Entrepreneur owns K units of capital, of which λK is "liquid".
 0 < λ < 1.
- Suppose a proportion, 0 intermediaries foreclose.
- Face value of the (rolled over) debt: $\overline{\omega}R^EQK$.
- Foreclosing intermediary gets $\overline{\omega}K$ units of capital if $\lambda > p\overline{\omega}$ (& $\frac{\lambda}{p}K$ otherwise).
- The entrepreneur is left with $\left(1 \frac{p\overline{\omega}}{\lambda}\right)K$ units of captial if $\lambda > p\overline{\omega}$ (& 0 otherwise).

Intermediaries' payoffs

- $0 < \gamma < 1$ is the intermediaries' "productivity".
- Gross return for foreclosing intermediary: $\gamma \overline{\omega} R^E Q K$ if $\lambda > p \overline{\omega}$ (& $\gamma \frac{\lambda}{p} R^E Q K$ otherwise).
- Gross return for entrepreneur: $\omega\left(1-\frac{p\overline{\omega}}{\lambda}\right)R^{E}QK$ if $\lambda > p\overline{\omega}$ (& 0 otherwise).
- Gross return for rolled over intermediary: $\overline{\omega}R^E QK$ if $\omega\left(1-\frac{p\overline{\omega}}{\lambda}\right) > \overline{\omega}$ (& $\omega\left(1-\frac{p\overline{\omega}}{\lambda}\right)R^E QK$ otherwise).

Intermediaries' problem

Rollover or foreclosure

• Intermediary f's payoff from investing in entrepreneur e is

$$x_{t} R_{t}^{\textit{E}} \mathit{Q}_{t-1} \mathit{K}_{t} \left(e
ight)$$
 where x_{t} is

Rollover	Foreclosure	
$\overline{\omega}$	$\gamma\overline{\omega}$	when $0 \le p \le \frac{\lambda}{\overline{\omega}}$ & $\omega \ge \frac{\overline{\omega}(1-p)\lambda}{\lambda - p\overline{\omega}}$
$rac{\omega}{(1-p)}\left(1-rac{p\overline{\omega}}{\lambda} ight)$	$\gamma\overline{\omega}$	when $0 \leq p \leq rac{\lambda}{\overline{\omega}} \& \omega < rac{\overline{\omega}(1-p)\lambda}{\lambda - p\overline{\omega}}$
0	$\frac{\gamma\lambda}{p}$	when $rac{\lambda}{\overline{\omega}} < {\it p} \leq 1$

Unique (symmetric) switching threshold

Key Result The "game" among intermediaries has a unique (symmetric) switching strategy equilibrium, with intermediaries foreclosing for all realizations of $\omega_t (e) < \omega_t^* \&$ rolling over for $\omega_t (e) > \omega_t^*$

$$\omega_t^* = \gamma \lambda_t \frac{\frac{\lambda_t}{\overline{\omega}_t} \left(1 - \ln\left(\frac{\lambda_t}{\overline{\omega}_t}\right)\right)}{\frac{\lambda_t}{\overline{\omega}_t} + \left(1 - \frac{\lambda_t}{\overline{\omega}_t}\right) \ln\left(1 - \frac{\lambda_t}{\overline{\omega}_t}\right)}$$

Inefficiency of the coordination problem

Definition Let $\omega_{t,eff}^*$ be the switching threshold if intermediaries could costlessly coordinate their actions

$$\omega^*_{t, eff} = \gamma \lambda_t$$

Key Result The non-coordination outcome is inefficient:

$$\omega_t^* > \omega_{t,eff}^*$$

Intermediaries will foreclose on some entrepreneurs, for which it would have been efficient to rollover.

Entrepreneurs' problem

Intermediaries' payoff

$$\underbrace{\left(\overline{\omega}_{t}\int_{\overline{\omega}_{t}}^{\infty}f\left(\omega\right)d\omega}_{\text{i. Rollover pay in full}}+\underbrace{\int_{\omega_{t}^{*}}^{\overline{\omega}_{t}}\omega f\left(\omega\right)d\omega}_{\text{ii. Rollover don't pay in full}}+\underbrace{\gamma\lambda_{t}\int_{0}^{\omega_{t}^{*}}f\left(\omega\right)d\omega}_{\text{iii. Foreclosure}}R_{t}^{E}Q_{t-1}K_{t}\left(e\right)$$

Rewrite

$$\left(\Gamma\left(\overline{\omega}_{t}\right)-\mathsf{G}\left(\omega_{t}^{*}\right)\right)\mathsf{R}_{t}^{\mathsf{E}}\mathsf{Q}_{t-1}\mathsf{K}_{t}\left(e\right)$$

where

$$\Gamma(\overline{\omega}_t) = \overline{\omega}_t \int_{\overline{\omega}_t}^{\infty} f(\omega) \, d\omega + \int_0^{\overline{\omega}_t} \omega f(\omega) \, d\omega$$

$$G(\omega_t^*) = \int_0^{\omega_t^*} (\omega - \gamma \lambda_t) f(\omega) \, d\omega$$

where $G(\omega_t^*)$ is the deadweight cost of coordination failure

Entrepreneurs' problem

Problem

Choose $Q_t K_{t+1}(e)$ & (aggr.state-contingent) $\overline{\omega}_{t+1}$ max expected profits s.t. intermediaries' participation constraint

Solution (Aggregate) illiquidity premium / leverage tradeoff

$$\frac{E_{t}R_{t+1}^{E}}{R_{t+1}} = \Xi\left(\frac{Q_{t}K_{t+1}}{N_{t+1}}, \lambda_{t+1}\right) \quad \text{where} \quad \Xi_{1}\left(.\right) > 0$$

(Aggregate) net worth dynamics

$$N_{t+1} = v \left((1 - G(\omega_{t+1}^*)) R_t^E Q_{t-1} K_t - R_t (Q_{t-1} K_t - N_t) \right)$$

Bernanke, Gertler, & Gilchrist (1999)

• The reduced form model bares a resemblance to

"The financial accelerator in a quantitative business cycle framework"

- Friction: Costly state verification (CSV) Townsend (1979)
- "Long-term" debt with intermediaries unable to observe entrepreneurs' returns without paying a monitoring cost

Risk premium - leverage ratio tradeoff

Parameterization

• Standard values for the common DSGE model parameters

	Moment	Description	Value	Source
1.	$R^E - R$	Risk premium [†]	2%	Bernanke et al (1999)
2.	$F\left(\overline{\omega} ight)$	Bankruptcy rate ^{††}	3%	Bernanke et al (1999)
3.	K/N	Capital to net worth ratio	2	Bernanke et al (1999)
4.	$\int_{0}^{\omega^{*}}\frac{\gamma\lambda}{\omega}f\left(\omega\right)d\omega$	Average recovery ratio of liquidated assets	50%	Berger et al. (1996)
1 0				

† Spread between the prime lending rate & the six month Treasury bill rate. †† Annualized

Parameterization

Parameter	Description	Value
υ	Entrepreneur survival probability	0.954 (0.956)
σ_{ω}^2	Variance of idiosyncratic shock	0.119 (0.118)
γ	Productivity of financial intermediaries	0.445 (-)
λ	Intra-period liquidity of capital	0.380 (-)
μ	Monitoring cost	- (0.166)
+		

^T Values in brackets refer to the parameterization of the CSV model

• Linearized trade-off between leverage & risk premium is 0.299 in CF vs. 0.095 in CSV.

1% negative technology shock

1% negative technology shock

1% fall in liquidity

1% fall in liquidity

Credit policy responses to an illiquidity shock

Policy responses to an illiquidity shock

Summary

- Coordination problems in credit markets in a DSGE model
- Coordination failure causes
 - Amplification of technology shocks
 - Contractionary effects on output of illiquidity shocks
- Policy implications
 - Equity injections may be a powerful tool in the near term to stem a crisis
 - Equity injections, however, can lead to longer term problems

Non-financial sector

α	Output elasticity w.r.t. capital	0.35
β	Subjective discount factor	0.99
δ	Depreciation of capital	0.025
h	Habit parameter	0.5
χ	Weight on labor in the utility function	5.6
ρ	Inverse Frisch elasticity of labour supply	3
φ	Price of capital elasticity w.r.t. investment to capital ratio	0.25
$ ho_A$	Technology shock persistence	0.95

Value