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Motivation

• The 2004 Basel II Accord introduced a menu of approaches for determining 
capital requirements, including the internal ratings-based (IRB) approach.
– It allowed banks to compute capital charges based on their own estimates of Probability of 

Default (PD) and Loss Given Default (LGD).

• Under the IRB approach, capital requirements are an increasing function in 
the PD and LGD parameters.

• A recent concern with this risk-sensitiveness of regulatory capital is that it 
might amplify fluctuations in the business cycles.

• Discussion about capital buffers.
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This paper

• The paper aims to understand the relationship between credit default and 
business cycles. In particular, the first part of the argument.

– To what extent recessions increase credit default.

– What are the impacts of recessions on the losses of lender institutions.

• We use data from the retail sector.

• We explore the time series and the individual data evidence.

• We take into account the unobserved individual effects.
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Evidence from time series

Figure: Credit default and unemployment rate – 2001:10 - 2010:10
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VAR model

• We estimate a Vector Autorregressive (VAR) model:

where

• We use Cholesky decomposition with the following ordering:

Unemployment → Selic → Default
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VAR (5): Impulse response funtions
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Microdata

• Data from the Credit Information System (SCR) of the Central Brank of Brazil.

• Two modalities of retail credit: Consumer Credit and Vehicle Financing.

• Two institutions: A and B.

• They represent 31% of Consumer Credit and 38% of Vehicle Financing.

• Period: 2003 – 2008.

• Frequency: Semi-annually.

• No. of transactions: 730 thousand in Consumer Credit and 2.5 million in 
Vehicle Financing.



Probit model

• Return or potential wage:

where are macroeconomic and/or sectoral variables measuring
business cycles.

• As usual, we assume that

• We observe:
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Probit model

• The probability of default is given by

where is the standard normal cumulative distribution function

and                                      . 
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Probit model

• Problem: The parameters appear in the likelihood function and they are 
unobserved.

• We assume:

• Then, we have:

where is the density function of the standard normal distribution

and are the parameters.
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Probit model

• Variables measuring business cycles:
– Aggregate unemployment

– Regional unemployment

– GDP

• Other controls:
– Risk rating;

– Interest rate;

– Market size (population);

– Borrower’s gender;

– Borrower’s occupation;

– Age;

– Fixed effects for banks.



Consumer credit – Marginal effect

(1) (2) (3) (4) (5)

Regional unemployment 0.0107*** -0.0003 -0.0003 -0.0004

Aggregate unemployment 0.0330*** 0.0337*** 0.0389*** 0.0100***

GDP -0.0071*** -0.0023***

Rating A 0.1944*** 0.2151*** 0.2109*** 0.2101*** 0.0140***

Rating B 0.5041*** 0.5257*** 0.5182*** 0.5173*** 0.1653***

Rating C 0.6426*** 0.6477*** 0.6476*** 0.6470*** 0.2941***

Rating D 0.9285*** 0.9318*** 0.9312*** 0.9308*** 0.6126***

Male 0.0149*** 0.0143*** 0.0151*** 0.0151*** 0.0083***

σc 0.6285*** 0.6111*** 0.6067*** 0.6039*** 0.1888

ρ 0.2832*** 0.2719*** 0.2690*** 0.2672*** 0.4356

Percent correctly predicted - Total 83.77 88.81 83.78 83.78 83.78
Percent correctly predicted - Default 76.36 73.47 76.36 76.36 76.24
Percent correctly predicted - Non Default 87.84 97.24 87.86 87.86 87.91
Log-likelihood value -432515.16 -482208.97 -431699.89 -431657.92 -
No. obs. 1406843 1566423 1406843 1406843 1406843



Vehicle financing – Marginal effect

(1) (2) (3) (4) (5)

Regional unemployment 0.0024*** 0.0011*** 0.0011*** 0.0013***

Aggregate unemployment 0.0059*** 0.0048*** 0.0067*** 0.0062***

GDP -0.0058*** -0.0061***

Rating A 0.0013*** -0.0008** -0.0011*** -0.0015*** -0.0054***

Rating B 0.0925*** 0.0893*** 0.0872*** 0.0863*** 0.0739***

Rating C 0.2245*** 0.2249*** 0.2210*** 0.2198*** 0.1911***

Rating D 0.8106*** 0.8105*** 0.8112*** 0.8124*** 0.7427***

Male 0.0024*** 0.0023*** 0.0024*** 0.0024*** 0.0032***

σc 0.2981*** 0.2917*** 0.2915*** 0.2842*** 0.0745

ρ 0.0815*** 0.0784*** 0.0783*** 0.0747 0.1655

Percent correctly predicted - Total 87.85 95.88 87.85 87.85 87.85
Percent correctly predicted - Default 57.96 52.8 57.96 57.96 57.96
Percent correctly predicted - Non Default 90.07 99.08 90.07 90.07 90.07
Log-likelihood value -254211.74 -283792.62 -253573.23 -252951.29 -
No. obs. 1750841 1928644 1750841 1750841 1750841



Transition probabilities

• We estimate the transition probabilites by the historical method.

Table: Univariate transition probabilities – recession and boom

AA A B C Default AA A B C Default
AA 40.03% 35.15% 3.35% 17.41% 4.07% AA 77.40% 12.62% 6.85% 1.66% 1.47%
A 2.02% 61.06% 14.84% 8.58% 13.50% A 0.02% 84.40% 6.50% 3.40% 5.68%
B 0.13% 9.52% 49.76% 6.44% 34.16% B 0.11% 22.46% 45.64% 7.59% 24.19%
C 0.04% 0.74% 1.85% 56.45% 40.92% C 0.03% 23.45% 8.41% 14.82% 53.30%

Default 0.00% 0.26% 0.68% 0.32% 98.74% Default 0.01% 4.08% 1.73% 1.66% 92.52%

AA A B C Default AA A B C Default
AA 48.97% 43.36% 2.45% 2.04% 3.17% AA 88.92% 1.81% 3.05% 2.88% 3.33%
A 1.25% 77.38% 11.57% 2.30% 7.50% A 10.28% 75.61% 5.89% 4.06% 4.16%
B 0.07% 8.77% 60.24% 4.44% 26.48% B 9.29% 17.95% 44.94% 10.96% 16.87%
C 0.14% 3.24% 9.03% 46.93% 40.67% C 10.50% 11.01% 6.37% 35.17% 36.95%

Default 0.01% 0.52% 2.91% 0.80% 95.76% Default 2.92% 3.35% 1.81% 2.65% 89.28%
Note: Average of semi-annual transition frequencies from rating i (initial rating) to rating k (f inal rating) in periods of recession and booming. Period: Jan/2003 to Jul/2008.
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Value at Risk experiment

• The model structure is the following:

where:

• is the # of transactions (50,000 in our simulation)

• is the exposure at default (equal to R$1 in our simulation)

• is the loss given default (See Silva, Marins and Neves (2009))

• is a Bernoulli variable indicating default
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Value at Risk experiment

Table: Simulated credit VaR

• Difference: 14% in Consumer Credit and 4% in Vehicle Financing.

Percentiles 95.0% 99.0% 99.9%
Booming 18.85% 18.89% 18.91%
Recession 21.55% 21.61% 21.62%

Percentiles 95.0% 99.0% 99.9%
Booming 12.27% 12.31% 12.32%
Recession 12.82% 12.88% 12.90%
Note: Percentiles of the simulated potential losses distribution. The VaR

         experiment is based in a portfolio composed by 50 thousand

         transactions sampled from portfolios of the two banks. Results

         are based in one hundred simulations in five runs.

Consumer Credit

Vehicle Financing



Conclusions

• VAR estimations suggest that after a positive shock in the unemployment
rate credit default increases, but the increase seems to be modest.

• Estimations based on microdata also provide evidence that the impact of an
increase in the unemployment rate (both aggregate and sectoral) or in the
GDP growth rate lies between 1 and 3 percentage points.

• VaR experiments show that potential losses in recessions are 4%-14% higher
when compared to the losses during booming periods.

• There is a relationship between credit default and business cycles, but less
strong than suggested in previous studies that use corporate data.
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