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Abstract

In this paper, we define a financial institution’s contribution to financial systemic risk as
the increase in financial systemic risk conditional on the crash of the financial institution. The
higher the contribution is, the more systemically important is the institution for the system.
Based on relevant but different measurements of systemic risk, we propose a set of market-
based measures on the systemic importance of financial institutions, each designed to capture
certain aspects of systemic risk. Multivariate extreme value theory approach is used to esti-
mate these measures. Using six big Canadian banks as the proxy for Canadian banking sector,
we apply these measures to identify systemically important banks in Canadian banking sec-
tor and major risk contributors from international financial institutions to Canadian banking
sector. The empirical evidence reveals that (i) the top three banks, RBC, TD, and BNS are
more systemically important than other banks, although with different order from different
measures, while we also find that the size of a financial institution should not be considered as
a proxy of systemic importance; (ii) compared to the European and Asian banks, the crashes of
U.S. banks, on average, are the most damaging to the Canadian banking sector, while the risk
contribution to the Canadian banking sector from Asian banks is quite lower than that from
banks in U.S. and euro area; (iii) the risk contribution to the Canadian banking sector exhibits
“ home bias ”, that is, cross-country risk contribution tends to be smaller than domestic risk
contribution.
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1 Introduction

Resilient, well-regulated financial systems are essential for economic and financial stability in

a world of increased capital flows. Problems in financial systems can reduce the effectiveness

of monetary policy and be extremely costly to the real economy, as illustrated in a number of

financial crises in both industrial and developing economies in the past few decades, including

the current global credit-liquidity turmoil. Therefore, supervisory authorities have devoted much

effort to monitoring and regulating financial sector. It is a key issue in such supervision that

policymakers need analytical tools to measure the systemic importance of individual institutions.

In times of financial crisis, these tools can help them to gauge the likely impact of distress at a

given financial institution on the stability of the overall banking system, while in normal times

it is crucial to use such tools to calibrate prudential instruments, such as capital requirements and

insurance premiums, according to the relative contribution of different institutions to systemic risk.

A few measures of systemic importance have been proposed in recent empirical studies. Adrian

and Brunnermeier (2009) propose the conditional Value-at Risk (CoVaR) as a measure of systemic

importance of financial institutions. Similar to the Value-at-Risk measure quantifying the uncon-

ditional tail risk of a financial institution, the CoVaR can capture how much the distress of one

institution can increase the tail risk of others. This measure provides a clear way on the bilateral

relation between the tail risks of two financial institutions. When applying CoVaR to measure the

systemic importance of a financial institution to the entire system, we have to construct a system

indicator on the status of the system, and then analyze the bilateral relation between the system

indicator and a specific institution. However, the complexity of the financial system usually makes

it difficult to construct a general indicator of the system. Furthermore, even if a system indicator is

given, the CoVaR method is difficult to be generalized to measure a group of financial institutions’s
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contribution to systemic risk.

Segoviano and Goodhart (2009) propose an indicator to measure the systemic importance of a

specific institution by estimating the probability that one or more institutions in the system would

be distressed given that this specific institution is distressed. This measure only considers the prob-

ability of the failure of at least another institution conditional on the failure of a specific institution,

but it cannot provide further useful information on the systemic importance of institutions. For

example, their measure cannot characterize the likelihood that all other institutions fall into failure

given that a specific institution falls into failure. In addition, the estimation method of their measure

is based on the minimum cross-entry approach (Kullback, 1959). Under this estimation approach,

a posterior multivariate distribution is recovered using an optimization procedure by which a prior

density function is required. Thus, the posterior density is constrained by the prior density which

follows a parametric specification. A possible serious problem with such a parametric specification

is model misspecification, which may lead to a misleading conclusion in inference and hypothesis

testing.

Zhou (2010) proposes the systemic impact index to measure the expected number of bank

failures in the banking system given one particular bank fails. Zhou’s systemic impact index only

focuses on how many banks are influenced when a particular bank fails, but it cannot provide

sufficient information in identifying the systemic importance of a financial institution more than

another. For example, even though two different institutions have the same value of systemic

impact index, their contribution to systemic risk can be different.

In this paper, similarly as in Lehar (2005), systemic risk is defined as an event in which at

least a certain fraction of financial institutions, for example, at least r financial institutions, crash

simultaneously. We measure the systemic importance of a financial institution or a group of finan-
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cial institutions by its contribution to the systemic risk. The higher the contribution is, the more

systemic importance is the institution or the group of financial institutions. The contribution is

defined as the difference between the conditional probability and unconditional probability of the

simultaneous crashes of at least a certain fraction of financial institutions, where the conditional

event in the conditional probability is the crash of this financial institution or this group of financial

institutions. When r taking values of 1,2, ..., up to the number of all other financial institutions in

the system, we obtain a set of different measures, each of which can capture different aspects of

systemic importance of financial institutions. To see this more explicitly, we consider the following

example. Two banks, A and B, in a banking system with m banks, report the same contribution

to the crash of at least another institution (measure 1), but institution A gives more contribution

to the simultaneous crashes of all other m− 1 institutions (measure m− 1). Thus, institution A

is the same financial importance as institution B in terms of measure 1, but institution A is more

systemically important than institution B in terms of measure m−1.

Given this set of measures on the systemic importance of financial institutions, two major prac-

tical application questions need to be addressed. First, how are these measures implemented?

Second, is the data available? For the first question, we first show that each of these measures

can be expressed as a summation of the joint tail probabilities. Then, we use multivariate extreme

value techniques to estimate semi-parametrically the tail probabilities1. Note that our approach

can allow us not only to measure the systemic importance of a financial institution, but also the

impact that the failure of an institution would have on other institutions. For the second question,

theoretically a bank is insolvent if the value of its liability exceeds the value of its assets. The major

problem is that for important asset classes, in particular the loan portfolio, market prices are not

1This estimation approach for extreme events has recently been used in the finance literature by Poon et.al (2004),
Hartmann et al. (2006), Straetmans et al. (2008), and De Jonghe (2010).
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available and thus it is not clear what the value of the assets is. Even if some balance sheet data,

such as non-performing loan ratios, earnings and profitability, liquidity and capital adequacy ra-

tios are available, these data typically have a relatively low-frequency (quarterly). Therefore, there

have been growing efforts recently to measure the soundness of a financial system based on data

from financial markets. For example, Elsinger and Lehar (2005), Hartmann (2005), Allenspach

and Monin (2006), and others, propose to measure systemic risk, defined as the probability of a

given number of simultaneous bank defaults, from equity return data. Similarly, Chan-Lau and

Gravelle (2005), Avesani et al. (2006), and Segoviano and Goodhart (2009) use the default prob-

ability to measure the systemic risk by employing liquid equity market or CDS market data. The

market-based measures have two major advantages. First, they can be updated in a more timely

fashion. Second, they are usually forward-looking, because asset price movements reflect changes

in market anticipation on future performance of the underlying entities. In this paper, following

some earlier studies in this literature, we propose to measure systemic importance of financial in-

stitutions based on stock prices of financial institutions. In particular, the systemic risk is defined

as the simultaneous crashes of at least several institution stock prices, which are available at a daily

frequency.

To highlight our approach, we apply our measures to identify systematically important banks

in Canadian banking sector and major risk contributors from international financial institutions to

Canadian banking sector. Using six big banks as the proxy for Canadian banking sector, we find

empirical evidence that (i) the systemic importance of the top three banks, RBC, TD, and BNS,

is greater than other banks, although with different order in terms of different measures, but we

also find empirical evidence that the size of financial institution should not be considered as a

proxy of systemic importance. For instance, the smaller bank, National bank, provides bigger risk
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contribution to the system than Bank of Montreal and Canadian Imperial Bank of Commerce; (ii)

compared to the European and Asian banks, the crashes of U.S. banks, on average, are the most

damaging to the Canadian bank sector, while the risk contribution to Canadian banking sector from

Asian banks displays quite lower than that from banks in euro area and U.S.; (iii) risk contribution

to Canadian banking sector exhibits “home bias ”, that is cross-country risk contribution tends to

be smaller than domestic risk contribution.

The remainder of this paper is organized as follows. Section 2 introduces our theoretical indi-

cator of measuring systemic importance of financial institutions. Section 3 outlines the estimation

procedures for the indicator. In section 4, the method is applied to measure the systemic impor-

tance of Canadian banks in Canadian banking sector and identify major risk contributors from

international financial institutions to Canadian banking sector. Section 5 offers some conclusions.

The mathematical proofs are presented in an appendix.

2 Methodology

In this section, we introduce a new approach to measure the systemic importance of financial

institutions. This measure is constructed as the difference between the conditional probability

and unconditional probability of the simultaneous crashes of at least several bank stock prices,

where the conditional event is the crash of the financial institution stock price. The extreme value

techniques are used to estimate the conditional and unconditional probabilities.

2.1 Systemic Importance Measures

For notational simplicity, suppose that the financial system we are interested in is a banking sys-

tem containing m banks and let Xi, i = 1, ...,m respectively represent stock returns of the m banks 2,

2There are other potential candidates, such as Credit Default Swap (CDS), can also be used to indicate the status
of a bank. The choice of bank stock prices for measuring banking system risk may be motivated by Merton’s (1974)
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where Xi denotes the log first difference of the price changes in bank stock. We adopt the conven-

tion to take the negative of stock returns, so that we can define all used formulae in terms of upper

tail returns. A bank is assumed to be in crisis (crash, failure, or collapse) if its stock returns fall

below a given crisis level at a given tail probability p. Thus, corresponding to the m banks, there

exist m crisis levels denoted by Qi(p), i = 1, ...,m, such that

P[X1 > Q1(p)] = P[X2 > Q2(p)]...= P[Xm > Qm(p)] = p. (1)

With the significance level p in common, the crisis levels Qi(p) generally differ across banks

because the marginal distribution functions P[Xi > Qi(p)] = 1−Fi(Qi(p)) are bank specific.

We want to measure the systemic importance of a single bank or group of banks by measuring

the increase in the systemic risk conditional on the crash of this bank or this group of banks.

Thus we need to give the definition of the systemic risk. Similarly as Lehar (2005), we define the

systemic risk as an event in which at least a certain fraction of banks (in this banking system) crash

simultaneously. Given the definition, we first measure the systemic risk conditional on the crashes

of a single bank or a group of banks by calculating the following probability of simultaneous

collapses of at least r banks conditional on the collapses of a subset banks,

Pm−L|L(r) ≡ P[∃i1, i2, ..., ir, ∈̄S,s.t.Xil > Qil(p), l = 1, ...,r|
⋂
i∈S

(Xi > Qi(p))]

= P[
⋃

i1<i2<...<ir

r⋂
l=1

(Xil > Qil(p), il∈̄S)|
⋂
i∈S

(Xi > Qi(p))], (2)

where S is the index set numbering individual banks and L is the number contained in S,
⋂r

l=1(Xil >

Qil(p), il∈̄S) is the event that r banks (numbered by i1, i2, ..., and ir) simultaneously crash, and⋃
i1<i2<...<ir

⋂r
l=1(Xil > Qil(p), il∈̄S) is the event that at least r banks crash, where r is an integer

and 1≤ r ≤ m−L.

option-theoretical framework toward default, which has become the cornerstone of a large body of approaches for
quantifying credit risk and modeling credit rating migrations.
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Let N represent for the number of r combinations out of m−L banks. The contribution of the

collapse of L banks to the collapse of at least r other banks is measured by

4Pm−L|L(r) ≡ P[
⋃

i1<i2<...ir

r⋂
l=1

(Xil > Qil(p), il∈̄S)|
⋂
i∈S

(Xi > Qi(p))]

−P[
⋃

i1<i2<...ir

r⋂
l=1

(Xil > Qil(p), il∈̄S)]. (3)

Clearly, the first term on the right hand side of the equation (3) characterizes the likelihood that

conditional on the collapse of the L banks in S, at least r other banks in the system become crash,

while the second term gives the unconditional probability of the collapses of at least r other banks.

Therefore,4Pm−L|L(r) captures the contribution of the failure of the L banks to collapse of at least

r other banks. Consequently, for a given integer r, we propose4Pm−L|L(r) as a measure to identify

the systemic importance of a specific bank or a group of banks if it becomes crash.

Equation (3) is very flexible in terms of the joint collapse set on the left hand side and condi-

tional set on the right hand side in conditional probabilities, thereby presenting a set of measures of

systemic importance of financial institutions based on relevant but different perspectives of mea-

surements of systemic risk. For example, 4P1|1(1) can capture the increase in the risk of bank i

conditional on the crash of another bank j, therefore it can identify which banks are most at risk

should a bank falls into crisis3. 4P1|1(1) is called as the extreme Corisk between two institutions.

Two other particular examples are4Pm−L|L(1) and4Pm−L|L(m−L). Given that a group of banks

(a special case is L = 1) becomes crashed, 4Pm−L|L(1) measures the increase in the risk that at

least one bank crashes by,

4Pm−L|L(1) = P[
⋃
j∈S̄

(X j > Q j(p))|
⋂
i∈S

(Xi > Qi(p))]−P[
⋃
j∈S̄

(X j > Q j(p))]

= S(1)1 −S(1)2 + ...+(−1)m−L−1S(1)m−L, (4)

3From a financial stability and risk management perspective, it may be equally critical to assess the financial
linkage at an institutional level.
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where

S(1)1 = ∑
i∈̄S

(P[(Xi > Qi(p)|
⋂
i∈S

(Xi > Qi(p)))]−P[(Xi > Qi(p))]),

S(1)2 = ∑
i< j,i, j∈̄S

(P[(Xi > Qi(p))
⋂

(X j > Q j(p))|
⋂
i∈S

(Xi > Qi(p)))]

−P[(Xi > Qi(p))
⋂

(X j > Q j(p))]),

...

S(1)m−L = P[
⋂
i∈̄S

(Xi > Qi(p))|
⋂
i∈S

(Xi > Qi(p)))]−P[
⋂
i∈̄S

(Xi > Qi(p))],

and4Pm−L|L(m−L) measures the increase in risk that all other (m−L) banks crash by,

4Pm−L|L(m−L) = P[
⋂
i∈̄S

(Xi > Qi(p))|
⋂
i∈S

(Xi > Qi(p))]−P[
⋂
i∈̄S

(Xi > Qi(p))]. (5)

It is important to note that the conditioning banks in equation (3) do not necessarily have to

be a subset of the banking system. For example, a group of international banks can be chosen as

the conditioning banks to explore the impact of foreign banks on the banking sector. Given the

sharp increase in international banking activity in recent years (Chan-Lau et.al , 2007), such a tool

can be used to identify the potential major financial institutions which influence the given banking

system. Moreover, the conditioning random variables in equation (3) could also be others than just

bank stock prices. For example, the conditional set can be limited to extreme downturns of the

stock market index. It is also possible that the approach could be extended by including further

economic variables or financial variables in the conditioning set, such as interest rates, exchange

rates, financial stress index, and another indicator of aggregate risk. Using an aggregate random

variable as a conditioning random variable, we can measure the extent that the banks are vulnerable

to such a systemic risk.

Given the specification of a measure, a proper estimation of this measure is key importance

for its implementation. The following theorem shows that 4Pm−L|L(r) can be expressed as the
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summation of conditional and unconditional probabilities which can be estimated by extreme value

theory approach.

Theorem 1 Let N represent for the number of r combinations out of m−L banks, where r is

an integer and 1 ≤ r ≤ m−L. Using A(r)
1 ,A(r)

2 , ..., and A(r)
N to express all these combinations, the

contribution of the collapse of L banks to the collapse of at least r other banks is measured by,

4Pm−L|L(r) ≡ P[
⋃

i1<i2<...ir

r⋂
l=1

(Xil > Qil(p), il∈̄S)|
⋂
i∈S

(Xi > Qi(p))]

−P[
⋃

i1<i2<...ir

r⋂
l=1

(Xil > Qil(p), ∈̄S)]

= S(r)1 −S(r)2 + ...+(−1)NS(r)N , (6)

where

S(r)1 = ∑
1≤ j≤N

(P[A(r)
j |

⋂
i∈S

(Xi > Qi(p))]−P[A(r)
j ]),

S(r)2 = ∑
1≤i< j≤N

(P[A(r)
i

⋂
A(r)

j |
⋂
i∈S

(Xi > Qi(p))]−P[A(r)
i

⋂
A(r)

j ]),

...

S(r)N = P(
N⋂

i=1

A(r)
i |

⋂
i∈S

(Xi > Qi(p)))−P(
N⋂

i=1

A(r)
i ).

Equation (6) provides a practical guide for estimating the 4Pm−L|L(r) by using multivariate

extreme value techniques to estimate semiparametrically these conditional and unconditional prob-

abilities on the right hand side of equation (see next section for details).

2.2 Estimation Approach

A key step to apply our approach to empirical investigation is to estimate these multivariate con-

ditional and unconditional probabilities in equations (6). Within the framework of a parametric

specification of the joint distribution function, the calculations of the multivariate probabilities in
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(6) are straightforward, because we can estimate the distributional parameters by parametric meth-

ods, for example, maximum likelihood techniques. However, since there is no evidence that all

stock returns follow the same distribution, a serious problem with the parametric specification of a

joint distribution is the model misspecification, which could lead to misleading results in inference

and hypothesis testing. To avoid very specific assumptions of the distributions of the stock returns

of banks and other aggregate financial variables, we use the semiparametric extreme value theory

approach proposed by Ledford and Tawn (1996), and Poon et al.(2004) to estimate theses proba-

bilities4. Extreme value theory is a tool used to consider the limiting distribution of the extreme

values of a random variable instead of the distribution of this random variable. Under extreme

value theory, even though fat tailed random variables may follow different distributions such as a

stable Paretian or mixtures of normals, at the limit they all converge to the same underlying distri-

bution. This indicates that for downside risk analysis there is no need for making assumptions as

to the exact distributional form of this kind of data.

The joint probabilities in equation (6) are determined by the dependence among returns and

their marginal distributions. In order to extract information on the tail dependence, we want to

eliminate the impact of the different marginal distributions. Therefore, we transform the orig-

inal returns series Xi, i = 1, ...,m, to series with a common marginal distribution. After such a

transformation, differences in joint tail probabilities across banking systems can be purely due to

differences in the tail dependence structure of the extreme returns.

In terms of this spirit, we transform these bank stock returns to unit Pareto marginals,

X̃i =
1

1−FXi(Xi)
, i = 1, ...,m, (7)

where FXi(·) represents the marginal cumulative distribution function (cdf) for Xi. Replacing the
4This approach consists of generalizing the results from the generalized Pareto law behavior of the minima and

maxima of the relevant distributions in univariate extreme value analysis to the bivariate case.
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unknown marginal cdfs with their empirical distribution functions, we have,

X̃i =
n+1

n+1−RXi

, i = 1, ...,m (8)

where n is the observation number of Xi and RXi is the rank order statistic of the return Xi. Any

conditional probability in (6), for example, P[
⋂r

l=1(Xil > Qil(p)), il∈̄S|
⋂

i∈S(Xi > Qi(p))], can be

written as,

P[
r⋂

l=1

(Xil > Qil(p)), il∈̄S|
⋂
i∈S

(Xi > Qi(p))]

=
P[(

⋂r
l=1(Xil > Qil(p)), il∈̄S)

⋂
(
⋂

i∈S(Xi > Qi(p)))]
P[
⋂

i∈S(Xi > Qi(p))]
. (9)

Using the variable transform, we can rewrite the joint tail probability in (9) as follows,

P[(
r⋂

l=1

(Xil > Qil(p)), il∈̄S)
⋂

(
⋂
i∈S

(Xi > Qi(p)))]

= P[(
r⋂

l=1

(X̃il > q), il∈̄S)
⋂

(
⋂
i∈S

(X̃i > q))]

= P[min(min1≤l≤r,il∈̄S(X̃il),mini∈S(X̃i))> q]

= P[min(Z1,Z2)> q], (10)

where q = 1/p,Z1 = min1≤l≤r,il∈̄S(X̃il), and Z2 = mini∈S(X̃i). Hence, the transformation to unit

Pareto marginals reduces the estimation of the multivariate probability to a univariate probabil-

ity. The only assumption that has to be made is that the distribution of the minimum series

Z = min(Z1,Z2) displays fat tails. Popular distribution models like the Student-t exhibits this tail

behavior.

The univariate tail probability for a fat-tailed random variable, like the one in (10), can be

estimated by using the semiparametric probability estimator from De Haan et al. (1994),

P̂[Z > q] =
k
n
(
Cn−k,n

q
)α, (11)
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where α > 0 is an unknown parameter and the tail cut-off point Cn−k,n is the (n−k)−th ascending

order statistic from the cross-sectional minimum series such that limn→∞[1/k(n)] = 0 and k = o(n).

The tail probability estimator is conditional upon the tail index α and a choice of the threshold

parameter k.5 This tail index α captures the tail probability’s rate of decay in the probability.

Clearly, the lower α, the slower the probability decay and the higher the probability mass in the

tail of Z.

To estimate α we use the popular Hill (1975) estimator for the index of regular variation η,

η̂ =
1
m

m−1

∑
j=0

ln(
Cn− j,n

Cn−m,n
) =

1
α̂
, (12)

where η̂ is the estimate of the parameter of tail dependence. A relatively high η̂ corresponds with a

relatively high dependence of the components (X̃1, ..., X̃m). Further details on the Hill estimator can

be found in Jansen and De Vries (1991). An important issue related to the dependence parameter η

is that it can used to examine interbank risk spillover between various groups of banks or different

banking sectors, for example, between group of small size of banks and group of large size of

banks, or Canadian and U.S. banking sectors6.

The choice of the threshold parameter k is a point of concern in the extreme value theory liter-

ature. If k is set too low, too few observations enter and determine the estimation. If one considers

a large k, non-tail events may enter the estimation. Hence, if one includes too many observations,

the variance of the estimate is reduced at the expense of a bias in the tail estimation. This results

from including too many observations from the central range. With too few observations, the bias

5The estimator (10) basically extends the empirical distribution of Z outside the domain of the sample by means
of its asymptotic Pareto tail from P[Z > q]≈ l(q)q−α,α ≥ 1 with q large and where l(q) is a slowly varying function
(i.e., limq→∞l(xq)/l(q) = 1 for all fixed x > 0).An intuitive derivation of the estimator is provided in Danielesson and
de Vries (1997).

6Quintos, Fan and Phillips develop a number of tests for identifying single unknown breaks in the estimated in the
tail index α ( η ). Their tests are used to assess whether breakpoints in asset return distributions exist for Asian stock
markets. In addition, Hartmann et.al (2005) use these tests to assess various hypotheses regarding the evolution and
structure of systemic risk in the banking system
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declines but the variance of the estimate becomes too large. A number of methods have been pro-

posed to select k in finite samples. Goldie and Smith (1987) suggest to select the parameter k so

as to minimize the asymptotic mean-squared error. In this paper, we use the widely used heuristic

procedure by plotting the tail estimator as a function of k and select k in a region where η̂ is stable.

3 Empirical Findings

The proposed methodology in Section 2 is general and can be applied to any financial system that

consists of financial institutions with publicly tradeable equity, CDS contracts, or other publicly

available data. For illustrative purposes, we apply these measures of systemic importance to the

Canadian banking sector and analyze the extreme risk of Canadian banks from complementary

perspectives by answering two main questions. First, at the level of an individual bank, we use

4P1|1(1) to measure the increase in risk of an individual bank when another bank falls into crash,

which will help us to identify which banks are most at risk should a bank fall into crash. Second,

we use 4Pm−L|L(r) to measure the systemic importance of a specific bank or a group of banks if

they become crashed. In addition, we also explore the impact of the crashes of major foreign banks

on Canadian banks, and measure the relative importance of the risk of domestic spillovers between

banks as compared to the risk of cross-border spillovers.

3.1 Data and Descriptive Statistics

The data we use in this empirical work are daily stock price for publicly traded financial institu-

tions. Canadian financial institutions considered consist of six big banks, three insurance com-

panies, and two other banks. They represent Canadian biggest commercial banks and nonbank

institutions in Canada and therefore have a direct and major impact on the Canadian financial

institutions. In addition to Canadian financial system, we also consider the impacts of major inter-
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national financial institutions on Canadian financial institutions. The group of major international

banks considered consists of ten U.S. banks, ten European banks, and three Asian banks. The

stock market risk factors or aggregate shocks are proxied by TSX (Canadian stock market index

return) for Canada, Sp500 (The U.S. stock market index) for U.S. , E100 (The European 100 stock

index) for European area, and NIKKEI 225 (Japan stock market index) for Japan. Both the stock

returns and market index returns are constructed by taking log first differences of stock price and

stock market indices, respectfully. All series, except for Goldman, start on 3 January 1994 and

end on 21 September 2009, rendering 4101 return observations. All series are downloaded from

Data-stream. Table 1 contains the full list of financial institutions considered in this paper, and the

abbreviation used in the tables.

Table 2 presents the descriptive statistics for institution stock return series and four market

stock index returns. Mean returns are basically zero, as one would expect for high data frequen-

cies. Compared to the standard deviations of U.S., European, and Asian institution stock returns,

Canadian institution stock returns exhibit the lowest standard deviations. All time series exhibit

high excess kurtosis, which provides evidence that these series are leptokurtic and have heavy tails.

This indicates that our heavy-tail assumption on the tail of losses is valid for the data. Table 2 also

reveals that the Jarque-Bera statistics strongly reject the null hypothesis of normal distribution at

any critical values commonly used. The results of formal augmented Dickey-Fuller non-stationary

tests indicate that the null hypothesis of non-stationarity is rejected at the 5% significant level.

3.2 Extreme Co-Risk between Individual Institutions

Our measures of the contribution of a particular institution or a specific group of institutions to

another institution or the overall systemic risk is based on the co-movements among institutions,

and capture both idiosyncratic effects as well as exposure among all institutions to common factors,
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e.g., the Canadian stock market, the U.S. stock market, etc. To remove the effects from common-

factor exposure, we use the following formulae to measure the contribution to the crash probability

of an institution conditional on the failure of another institution (4P1|1(1)),

4P1|1(1) = {P[X1 > Q1(p)|X2 > Q2(p),Y1 > QY1(p),Y2 > QY2(p)]−P[X1 > Q1(p)]}

−{P[X1 > Q1(p)|Y1 > QY1(p),Y2 > QY2(p)]−P[X1 > Q1(p)]}, (13)

where Y1 and Y2 in equation (13) stand for the index returns of the stock markets, and they are

chosen as follows: TSX and Sp500 for the extreme Corisk between Canadian and U.S. institu-

tions, TSX and NIKKEI 225 between Canadian and Japanese institutions, and TSX and E100 for

Canadian and European institutions. The first part P[X1 > Q1(p)|X2 > Q2(p),Y1 > QY1(p)Y2 >

QY2(p)]− P[X1 > Q1(p)] in equation (13) measures the contribution of institution 2, common

factors Y1, and Y2, to the crash of the institution 1, while the second part P[X1 > Q1(p)|Y1 >

QY1(p),Y2 > QY2(p)]−P[X1 > Q1(p)] measures only the contribution from the two common fac-

tors. Thus, the difference (4P1|1(1)) between the first part and second part removes the influences

from the two common factors, and captures the contribution from idiosyncratic shocks of institu-

tion 2 to institution 1. Similarly, for any integer 0 ≤ r ≤ m−L, the following formulae is used to

measure the systemic importance of an institution or group of institutions,

4Pm−L|L(r) = {P[
⋃

i1<i2<...ir

r⋂
l=1

(Xil > Qil(p), il∈̄S)|
⋂
i∈S

(Xi > Qi(p)),Y1 > QY1(p),Y2 > QY2(p)]

−P[
⋃

i1<i2<...ir

r⋂
l=1

(Xil > Qil(p), ∈̄S)]}

−{P[
⋃

i1<i2<...ir

r⋂
l=1

(Xil > Qil(p), il∈̄S)|Y1 > QY1(p),Y2 > QY2(p)]

−P[
⋃

i1<i2<...ir

r⋂
l=1

(Xil > Qil(p), ∈̄S)]}. (14)

Tables 3 and 4 report the increase in the crash probability of the institution specified in the
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column when another institution in the row becomes crashed. For example, the value 23.5% in

the column “RBC” and the row “TD” indicates that the crash probability of RBC increases 23.5%

when TD is experiencing a crisis, and all values of 4nP1|1(1) in the row “TD” capture the in-

crease in the crash probability of any other institutions associated with the crash of TD. Among

the Canadian financial institutions in the analysis, BNS is the most exposed to the risk associated

with the crashes of other institutions, with its average Corisk reaching 27.1% (the average of the

column “BNS” ) followed by BMO with 24.6% (the average of column BMO), CIBC with 24%

(the average of column CIBC), RBC with 23.9%, MLIFE with 23.8%, and TD with 22.8%. In

turn, BNS, RBC, TD, BMO, and MLIFE are the top five largest contributors to the systemic risk

with their average Corisk values at 24.2% (the average of row BNS), 23.2%, 21.5%,21.3%, and

21.1%, respectively. On one hand, this result suggests that BNS, RBC and TD are systematically

important banks in term of their contributions to the system risk, but on the other hand BNS, BMO,

and CIBC are most exposed to the risk from the crashes of other institutions, which indicates RBC

and TD contribute more risk to the system than BMO and CIBC, but they suffer less risk effects

from other institutions than BMO and CIBC. Table 3 displays that on average, Lau is less affected

by other financial institutions, while it contributes the lowest risk to the financial system.

Tables 3 and 4 show that the maximum Corisk value occurs between Canadian institutions,

which indicates that the major spillover risk to Canadian institutions comes from domestic institu-

tions rather than foreign institutions. For example, when going through values in column RBC, we

find that the maximum Corisk value is 33.1% describing the Corisk between BNS and RBC, which

is larger than any Corisk value between RBC and any foreign institutions. Actually, when going

through all the columns in table 3, it turns out that the highest Corisk value occurs between Cana-

dian institutions. This result provides the evidence of the existence of “home bias” in spillover risk,
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i.e., cross-country risk spillover tends to be smaller than domestic risk spillover. Another impor-

tant observation form tables 3 and 4 is that on average, if any of the Canadian institutions fall into

crashes, the average of Corisk values of the other Canadian institutions being crashed is 21.1%,

while the averages of the Corisk values of Canadian institutions conditional on the crashes of the

institutions in U.S., Europe, and Asia are 15.4%,8.9%, and 5.3%, respectively. These findings not

only suggest that the highest Corisk value exists between Canadian institutions, but also indicates

that on average, compared to the institutions in the U.S., Europe, and Asia, the crashes of Canadian

institutions are the most damaging to the domestic institutions.

It is important to note that SL benefits from the failure of SUMI (negative Corisk). The potential

explanation for this phenomenon is “flight to quality”, or “competive effects”, which suggests that

some banks benefit from the troubles at other banks, as (e.g.) depositors withdraw their funds from

the bad banks to put them in good banks. Such behavior has been refereed by Kaufman (1988) in

relation to U.S. banking history, and Saunders and Wilson (1996) provided some evidence for it

during two years of the Great Depression.

On average, Wells Fargo, Jpmorgan, and BOA represent three biggest international risk banks

for Canadian institutions. Among European institutions, BBVA, UBS, and DEUTS are the three

biggest risk banks for Canadian institutions. Compared with institutions in both the U.S. and

Europe, shocks to Japanese institutions display quite lower impact on Canadian institutions.

3.3 Measuring Systemic Importance of Canadian Banks

Based on the Corisk measure between institutions, we use the average of Corisk between institu-

tions to measure the increase in the risk of Canadian financial system conditional on the crash of a

specific institution, but it is obvious that the joint crash of financial system may experience a non-

linear relationship rather than the average Corisk between individual institutions. Consequently,
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from different perspectives by taking different values of L,m and r, we use4Pm−L|L(r) to quantify

and identify the systemic importance of institutions.

When r = 10,L = 1, and m− L = 10, Figure 1 reports the increase in the risk that all other

institutions become crashed when a specific institution falls into crash (4P10|1(10)). For compar-

ison, the average of the extreme Corisks between this specific institution and all other institutions

(average of all4P10|1(10) between this institution and all other institution) is also reported in Fig-

ure 1. It is noticeable that RBC, TD, and BNS again are the top three highest values of4P10|1(10)

with 8.3%,8.1%, and 7.2%, respectively, even though these values are very close to each other.

The MLIFE reports the fourth highest value of 4P10|1(10) at 7% followed by BMO with 6.8%,

which indicating that the top-five institutions are ordered by RBC, TD, BNS, MLIFE, and BMO

in terms of the measure 4P10|1(10). MLIFE has a higher value of 4P10|1(10) than BMO, CIBC,

and NB, which suggests that the size of a financial institution should not be considered as a proxy

of systemic importance7. Figure 1 also shows that for every institution,4P10|1(10) is consistently

smaller than the average of the extreme Corisk. A possible explanation for this result is that a

simple average repeatedly adds up the interactions among individual institutions which could be

higher than the actual risk of joint crash.

To further explore the systemic importance of Canadian financial institutions from different

perspectives, Figure 2 reports the estimations of4P10|1(r), for r = 1,2, and 3, which measure the

increase in the risk from the simultaneous collapse of at least r(r = 1,2,3) financial institutions

conditional on the collapse of a specific institution. To name a few with the highest values of

7Based on daily stock returns of 28 U.S. banks, Zhou (2010)provides empirical evidence that the size measures
are not good proxy of the systemic importance. Therefore, size should not be automatically regarded as a proxy of
systemic importance. Tarashev et.al (2009) consider financial systems that possess the following three features. First,
all banks in a given system share the same probability default and exposure to the common factor. Second, there are
three big banks of equal size, which account for 40% of the overall system. Third, a group of equally-sized small
banks make up the rest of the system. In all of these systems, the systemic importance of a big bank is greater than
that of a small one.
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4P10|1(1),4P10|1(2), and 4P10|1(3), BNS has the highest 4P10|1(1) followed by RBC, BMO,

TD, and MLIFE; BNS reports the highest 4P10|1(2) followed by RBC, MLIFE, BMO, and TD.

The five highest 4P10|1(3) institutions are ordered as TD, RBC, BNS, MLIFE, and BMO which

are the same institutions as those with highest values of 4P10|1(1) and 4P10|1(2), even though

there is a different order. Overall, from Figures 1 and 2, we find that the five financial institutions,

RBC, TD, BNS, BMO, and MLIFE have consistently higher values of 4P10|1(1),4P10|1(2), and

4P10|1(3) than other institutions, suggesting that the five financial institutions are more systemi-

cally important than other financial institutions in terms of the measures4P10|1(1),4P10|1(2), and

4P10|1(3). Notably, Figure 2 displays that SunLife is more systemically important than GW, Lau,

and CW, although it is less important than the top five financial institutions.

We remove the three non-bank financial institutions (GW, Slife, and Manulife) from the list of

Canadian financial institutions and use six big banks as a proxy for the Canadian banking sector

to focus on identifying and quantifying the systemic importance of each bank in the six big banks.

However, we still use the three non-bank financial institutions to examine how the risks from non-

bank financial institutions are related to the Canadian banking sector, while choosing the two small

banks (Lau, CW ) as proxy for other Canadian banks to investigate how important other Canadian

banks are for the Canadian banking sector. In addition, we take the world’s major institutions

in the United States, European countries, and Asia to estimate the cross-country risk impacts on

Canadian banking sector.

To measure the systemic importance of each bank in the six big banks when this bank is ex-

cluded from this six big banks, we consider six groups of banks respectfully denoted by A1={TD,

BNS, BMO, CIBC, NB}, A2={RBC, BNS, BMO, CIBC, NB}, A3={RBC, TD, BMO, CIBC, NB},

A4={RBC, TD, BNS, CIBC, NB}, A5={RBC, TD, BNS, BMO, NB}, and A6={RBC, TD, BNS,
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BMO, CIBC}.

The estimations of the five systemic importance measures,4P5|1(r),r = 1,2, ...,5, are reported

in tables 5-9, respectively. We start with the 4P5|1(1) measure which reports in table 5 the in-

crease in the crash probability that at least one bank in each group in the column become crashed

when the bank in the row becomes crashed. For example, the value 30.6% in the row “RBC” and

the column “A1” in panel a refers to the increase in the probability that the group of banks A1

falls into failure if RBC is experiencing a crash. The banks in ascending order of the 4P5|1(1)

values are BNS, RBC, TD, CIBC, BMO, and NB, with their respective 4P5|1(1) values being

32.4%,30.6%,29.6%,29.4%,27%, and 26.7%. In table 6, the top three values of 4P10|1(2) are

ordered as BNS, RBC, and TD, which are the same order as those with the highest values of

4P10|1(1) in table 5, although the three lowest 4P5|1(2) banks have different order from that of

three lowest4P5|1(1) banks.

The values of4P5|1(3),4P5|1(4), and4P5|1(5) give a somewhat different outlook of the order

of their top three banks compared to the measures of 4P5|1(1) and 4P5|1(2), but they report the

same top three banks as 4P5|1(1) and 4P5|1(2), although with a different order, that is the top

three banks are always RBC, TD, and BNS across the five different measures, although their order

could be different. Notably, tables 5-9 suggest that the two lowest values of all the five measures

come from CIBC and NB. The lowest values of 4P10|1(2),4P10|1(3), and 4P10|1(4) come from

NB, while the bank CIBC has the lowest values of 4P10|1(1) and 4P10|1(5), which indicates

that the two lowest values of the five measures comes from CIBC and NB. As noted that for

4P10|1(1),4P10|1(2), and 4P10|1(3), even though RBC has a higher size than BNS in terms of

total assets, it is less systemic importance than BNS in terms of the measures4P10|1(r),r = 1,2,3,

suggesting that the size measures are not good proxy of the systemic importance. Therefore, size
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should not be automatically regards as a proxy of systemic importance.

To summarize, by applying the five proposed measures on systemic importance to the artifi-

cially constructed Canadian banking system consisting of big six Canadian banks, we find that the

systemic importance of RBC, TD and BNS is greater than other banks, even though the three banks

have different order for each measure. The empirical results based on the five measures provide

evidence that the “ too big to fail ” argument (larger banks exhibits higher systemic importance)

is not always valid, suggesting that the size of a bank should not be considered as a proxy of its

systemic importance without careful justification based on systemic importance measures.

To explore the potential risk factors to Canadian banking system from global major banks, we

use the proposed systemic importance measures to assess the impact of the global major institutions

on the Canadian banking system. The tables 5-9 also report the values of 4P5|1(r)(r = 1, ...,5)

between Canadian banking system and major global institutions. The empirical findings reveal

several other key trends. We find that “home bias” is a dominant factor in terms of the contribution

to the increase in the risk of Canadian banking system. For example, in tables 5-8, going through

each column from A1 to A5, it reveals that the highest value of each4P5|1(r)(r = 1,2, ...,5) comes

from one of the five big banks (RBC, TD, BNS, BMO, and CIBC), and the last column in table 9

indicates that GW has the highest value of4P5|1(5), suggesting that the Canadian banking sector is

the most vulnerable to the risk from domestic financial institutions rather than foreign institutions.

The “home bias” effects are also shown by Figure 3 where NB has more contribution to the crash

probabilities of the five biggest Canadian banks than major international banks8.

On average, compared to the Canadian small banks, and the institutions in the U.S., Euro, and

Asia, the three Canadian non-bank financial institutions have higher risk contribution to the Cana-

8Figure 4 shows the contribution of each of Canadian six big banks to the crashes of at least r banks of the U.S.
five big banks, where r=1, 2, 3. Figures 3 and 4 indicate that U.S. banks have stronger impacts on Canadian banks
than Canadian banks on U.S. banks.

21



dian banking system. However, on a country-by-country basis, the U.S.’s institutions consistently

represent the biggest risk factor for the Canadian banking system. Specifically, Wells and BOA are

consistently the top two risk contributors to the Canadian banking system among all foreign insti-

tutions considered in this paper. On average, among the European banks, the Canadian banking

system are most exposed to the risk from the three banks, BBVA, DEUTS, and UBS AG.

4 Conclusion

This paper proposes a set of tools to measure the systemic importance of financial institutions. We

measure the systemic importance of a financial institution or a group of financial institutions by its

contribution to the systemic risk. The higher the contribution is, the more systemically important

is the institution or the group of financial institutions. The contribution is defined as the difference

between the conditional probability and unconditional probability of the simultaneous crashes of

at leats of a certain fraction of financial institutions, where the conditional event in the conditional

probability is the crash of this financial institution or this group of financial institutions. Given

these measures, we propose an approach to estimate these measures by expressing these measures

as a summation of conditional and unconditional probabilities of crashes. Then we use multivariate

extreme value theory to estimate semiparametrically these probabilities.

To highlight our approach, we apply our measures to identify the systemic importance of Cana-

dian banking sector and major risk contributors from international financial institutions to Cana-

dian banking sector. Using six big banks as the proxy for the Canadian banking sector. We find

the empirical evidences that the systemic importance of the top three banks, RBC, TD, and BNS

is greater than other banks. We also find that empirical evidence that the size of a financial institu-

tion should not be considered as a proxy of systemic importance. Compared to the European and
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major Asian institutions, the crashes of the U.S. institutions, on average, are the most damaging

to the Canadian bank sector, while the risk contribution to Canadian banking sector from Asian

banks display quite lower than that from institutions in euro area and U.S.. The risk contribution

to Canadian banking sector exhibits “home bias”, that is cross-country risk contribution tends to

be smaller than domestic risk contribution.
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Appendix
Proof of Theorem 1. We use mathematical induction to prove theorem 1. For r = 1, we use

(Xil > Qil(p)), l∈̄ S to represent that the bank il which is not in S is in crisis. Then, the event

that at least one extra bank is in crisis can be written as
⋃

l∈̄S(Xil > Qil). Let n = m−L express the

number of banks contained in S̄. When n= 1,4Pm−L|L(1) =P[(Xi1 >Qi1(p))|
⋂

i∈S(Xi >Qi(p))]−

P[(Xi1 > Qi1(p))], so equation (3) holds. For n = 2, we have

4Pm|L(1) ≡ P[(Xi1 > Qi1(p))
⋃

(Xi2 > Qi2(p))|
⋂
i∈S

(Xi > Qi(p))]

−P[(Xi1 > Qi1(p))
⋃

(Xi2 > Qi2(p))]

= P[(Xi1 > Qi1(p))|
⋂
i∈S

(Xi > Qi(p))]−P[(Xi1 > Qi1(p))]

+P[(Xi2 > Qi2(p))|
⋂
i∈S

(Xi > Qi(p))]−P[(Xi2 > Qi2(p))]

−P[(Xi1 > Qi1(p))
⋂

(Xi2 > Qi2(p))|
⋂
i∈S

(Xi > Qi(p))]

+P[(Xi1 > Qi1(p))
⋂

(Xi2 > Qi2(p))],

which indicates that equation (3) holds for n = 2. Assuming that equation (3) holds for n = k, we

want to prove that equation (3) holds for n = k+1. We have

4Pm|L(1) ≡ P[
k+1⋃
l=1

(X jl > Q j(p))|
⋂
i∈S

(Xi > Qi(p))]−P[
k+1⋃
l=1

(X jl > Q j(p))]

= P[(
k⋃

l=1

(X jl > Q j(p)))
⋃

(X jk+1 > Q jk+1(p))|
⋂
i∈S

(Xi > Qi(p))]

−P[(
k⋃

l=1

(X jl > Q j(p)))
⋃

(X jk+1 > Q j(p)))]

= P[(
k⋃

l=1

(X jl > Q j(p)))|
⋂
i∈S

(Xi > Qi(p))]−P[(
k⋃

l=1

(X jl > Q j(p)))]

+P[(X jk+1 > Q jk+1(p))|
⋂
i∈S

(Xi > Qi(p))]−P[(X jk+1 > Q jk+1(p))]

−P[
k⋃

l=1

{(X jl > Q j(p))
⋂

(X jk+1 > Q jk+1(p))}|
⋂
i∈S

(Xi > Qi(p))]
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+P[
k⋃

l=1

{(X jl > Q j(p))
⋂

(X jk+1 > Q jk+1(p))}]

= S(1)
′

1 −S(1)
′

2 + ...+(−)kS(1)
′

k

+P[(X jk+1 > Q jk+1(p))|
⋂
i∈S

(Xi > Qi(p))]−P[(X jk+1 > Q jk+1(p))]

−P[
k⋃

l=1

{(X jl > Q j(p))
⋂

(X jk+1 > Q jk+1(p))}|
⋂
i∈S

(Xi > Qi(p))]

+P[
k⋃

l=1

{(X jl > Q j(p))
⋂

(X jk+1 > Q jk+1(p))}]. (A.1)

Using the assumption that n = k, we have,

P[
k⋃

l=1

{(X jl > Q j(p))
⋂

(X jk+1 > Q jk+1(p))}|
⋂
i∈S

(Xi > Qi(p))]

−P[
k⋃

l=1

{(X jl > Q j(p))
⋂

(X jk+1 > Q jk+1(p))}]

= S(1)
′′

1 −S(1)
′′

2 + ...+(−)kS(1
′′)

k , (A.2)

where

S(1)
′′

1 =
k

∑
l=1

(P[{(X jl > Q j(p))
⋂

(X jk+1 > Q jk+1(p))}|
⋂
i∈S

(Xi > Qi(p))]

−P[{(X jl > Q j(p))
⋂

(X jk+1 > Q jk+1(p))}]),

...

S(1)
′′

k = P[
k⋂

l=1

{(X jl > Q j(p))
⋂

(X jk+1 > Q jk+1(p))}|
⋂
i∈S

(Xi > Qi(p))]

−P[
k⋂

l=1

{(X jl > Q j(p))
⋂

(X jk+1 > Q jk+1(p))}].

Putting (A.2) into (A.1), and let S(1)1 = S(1)
′

1 +P[(X jk+1 >Q jk+1(p))|
⋂

i∈S(Xi >Qi(p))]−P[(X jk+1 >

Q jk+1(p))],S(1)2 = S(1)
′

2 + S(1)
′′

1 , ...,S(1)k = S(1)
′

k + S(1)
′′

k−1, and S(1)k+1 = S(1)
′′

k . Therefore, equation (3)

holds for r = 1 when n = k+1. For any positive integer r ≤ m−L, the event that at least r banks

crash can be written as
⋃N

j=1 Ar
j, where Ar

j is defined in equation (3). Therefore, 4Pm|L(r) ≡
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P[
⋃N

j=1 Ar
j|
⋂

i∈S(Xi > Qi(p))]−P[
⋃N

j=1 Ar
j]. Thus, we can use the same way as we prove equation

(3) for r = 1 to prove that equation (3) holds for any positive integer r ≤ m−L.
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Table 1: List of Financial Institutions

Canada Asia Area
Institution name Abbreviation Institution name Abbreviation
Roybal Bank of Canada RBC Mitsubishi UFJ MITSUB
Toronto-Dominion Bank TD Mizuho Finl MIZUHO
Scotiabank BNS Sumitomo corp SUMIT
Bank of Montreal BMO
Canadian Imperical Bank of Commerce CIBC Aggregate Risk
National bank NB Toronto Stock Exchange TSX
Sunlife Financial Inc SLIFE Standard and Poor’s 500
Great West Life GW Stock Index SP500
Manulife Financial Canada MLIFE FTSE EUROTOP 100 Index E100
Laurentian Bank of Canada LAUREN NIKKEI225 N225
Canadian Western Bank CW

The United States
Institution name Abbreviation
JP Morgan Chase JPMORGAN
Citigroup CITIG
Bank of American BOA
Wells Fargo and Company FARGO
Goldman Sachs GOLDMAN
American International group AIG
Morgan Stanley MS
US Bancorp BANCORP
Bank of New York BNYORK
State Street SSTREET

Euro Area
Institution name
Deutsche Bank DEUTSCHE
Barclay Plc BARCLAY
BNP Paribas BNPPAR
HSBC HSBC
UBS AG UBSAG
Societe Generale SOCIETE
Banco Santander BANCO
Credit Agricole CA
Commerzbank COMMERZ
Creditswiss CS
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Table 2: Summary Statistics of the Data

Institute Mean Std.Dev Skewness Kurtosis Min Max JB Test A.D.F. Test
RBC 0.1 1.5 0.2 11.9 -14.4 13.7 13778 -56.2
TD 0.0 1.7 0.2 8.5 -13.6 12.3 5128 -53.1
BNS 0.0 1.6 0.0 9.5 -14.3 12.2 7113 -44.0
BMO 0.0 1.6 0.4 11.2 -13.1 16.7 11455 -57.1
CIBC 0.0 1.8 -0.1 10.3 -17.0 13.1 9210 -52.3
NB 0.0 1.7 0.1 12.1 -18.2 13.7 14036 -34.7
GW 0.1 1.9 -0.3 9.6 -18.4 19.8 7481 -25.9
CW 0.1 1.8 0.4 16.7 -15.3 10.9 32007 -13.1
LAU 0.0 1.7 0.1 11.6 -9.3 12.2 12089 -28.0
SLIFE 0.0 2.2 0.1 12.6 -15.0 17.9 9490 -8.3
MLIFE 0.0 2.2 -0.4 16.4 -16.6 16.9 19657 -12.9

JPMORGAN 0.0 2.7 0.3 14.7 -23.2 22.4 236190 -65.7
CITIG -0.0 3.3 -0.5 41.8 -49.5 45.6 257220 -34.1
BOA 0.0 2.9 -0.3 31.7 -34.2 30.2 141130 -62.1
WELLS 0.0 2.5 0.9 28.2 -27.2 28.3 108680 -30.1
GOLDMAN 0.0 2.8 0.4 12.9 -21.0 23.5 11302 -55.7
AIG -0.0 3.9 -3.6 123.9 -93.6 50.7 249690 -34.0
MORGAN 0.0 3.3 1.3 47.5 -29.9 62.6 339840 -33.1
BANCORP 0.0 2.3 -0.1 16.7 -20.0 20.6 3210 -66.6
BNYORK 0.0 2.6 -0.1 18.5 -31.7 22.2 40815 -52.3
SSTATE 0.0 3.1 -0.4 29.1 -89.3 27.3 11654 -47.9

DEUTSCHE 0.0 2.3 0.2 12.9 -18.1 22.3 168130 -46.6
BARCLAY 0.0 2.8 1.5 52.3 -23.6 54.9 417080 -60.1
BNPPAR -0.0 3.4 -0.7 34.9 -18.9 18.8 174120 -54.7
UBSAG -0.0 2.3 0.2 16.7 -18.8 27.5 32038 -16.7
SOCIETE 0.0 2.4 -0.1 9.0 -16.9 18.2 6201 -60.9
BANCO 0.0 2.1 -0.1 9.2 -16.0 14.1 6168 -61.9
CREDIT 0.0 2.5 0.2 12.3 -17.7 24.6 14938 -59.6
COMMER -0.0 2.6 -0.2 15.5 -28.2 19.5 265140 -48.4
BBVA -0.0 3.4 -0.7 34.9 -52.2 38.9 120460 -11.9
CRESWISS 0.0 2.4 -7.1 61.3 -16.9 23.8 432107 -32.2

MITSUBISHI -0.0 2.7 0.3 6.4 -15.8 14.6 1090 -44.7
MIZUHO -0.1 3.5 0.2 6.7 -17.7 17.8 1366 -44.1
SUMITOMO 0.0 2.5 -0.0 6.2 -18.1 13.2 17663 -44.2

TSX 0.0 1.1 -0.7 13.8 -9.8 9.4 20099 -64.1
SP500 0.0 1.3 -0.2 12 -9.5 10.9 13878.9 -49.6
E100 0.0 1.3 -0.2 9.1 -8.2 9.8 5397.4 -30.6
Japan -0.0 1.5 -0.2 12.0 -12.1 13.2 6375.2 -48.4
The JB test refers to the test for normality of the unconditional distribution of the returns. Data are from 3
January 1994 to 21 September 2009. The source of raw data is Data stream.28



Table 3: Extreme Corisk between Individual Banks (%)(4P1|1(1)))

Row
RBC TD BNS BMO CIBC NB CW LAU GW MLIFE SLIFE Average

Canadian Banks
RBC 33.3 29.2 33.2 26.7 18.9 23.1 15.7 14.8 20.4 17.3 23.2
TD 23.5 33.1 30.2 26.9 20 16.5 11.4 12.6 21.3 19.5 21.5
BNS 33.1 28.6 30.2 32.1 21 15.5 15.6 16.7 25.4 23.8 24.2
BMO 26.3 31.9 29.4 22.9 14.9 15.8 11.6 11.9 24 25.1 21.3
CIBC 26.4 20.1 31.4 23.7 14.9 12.4 12.6 15.7 21.9 22.8 20.1
NB 26.6 17.8 28 22.8 20.2 14.9 14.1 14.8 27.7 15.6 20.2
CW 21.1 18 19.7 26.8 16.1 14.3 18.9 24.8 19.4 15.2 19.4
Lau 18.2 16.5 24.8 22.6 20.5 16.8 23.5 12.5 18.5 16.1 19
GW 18.8 16 24.9 20.1 24 16.7 29 11.7 28.9 19.1 20.9
MLIFE 22.7 21.6 23.3 18.8 23.7 21.8 16.5 11.8 23.7 27.5 21.1
SLIFE 23.1 25.1 27.9 18.2 27.4 13.5 14.7 12.3 17.2 30.5 20.9
Column
Average 23.9 22.8 27.1 24.6 24 17.2 18.5 13.5 16.4 23.8 20.2 21.1

U.S. Banks
JpMORGAN 21.8 17.8 18.8 21.7 19.3 18.8 15.8 9.9 12.4 19 19.6 17.7
CTG 19.7 8.1 14.2 17.5 17.6 9.4 13.4 8.7 6.7 19.4 14.6 13.7
BOA 23.2 17.8 17.3 19.2 18.8 15.8 9.9 12.8 18.2 19.7 19.9 17.5
AIG 19.3 6.8 15.3 14.4 15.7 15 18.8 7.5 18.9 23.2 14.9 15.4
WELLS 25.6 18.3 20.2 23.2 27.3 11.6 15.6 9.4 16.9 22.7 19.4 19.1
MORGAN 14.2 12.5 13.1 16.4 12.1 9.4 7.9 6.5 6.7 11.8 11 11.1
GOLDMAN 18.5 13.3 13.1 14.1 13.2 5.5 7.3 8.9 11.1 11.1 14.7 11.8
BCORP 20.1 11.7 16.5 17.3 19.1 13.7 19.5 12.4 15.2 24.1 12.5 16.5
NYORK 21.3 15.3 17.7 22.1 14.3 11.3 11.1 8.8 10.4 13.3 17.8 14.8
SSTATE 24.5 11 14.6 20.4 19.3 8 10.8 12.5 13.3 18.9 24.6 16.1
Column
Average 20.8 13.2 16.1 18.6 17.6 11.8 13 9.7 12.9 18.3 16.9 15.4
The table reports the increase in the crash probability of the financial institution specified in the column when
the financial institution in the row becomes crash. The crisis level is set to p = 0.05.
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Table 4: Extreme Corisk between Individual Banks (%)(4P1|1(1)))

Row
RBC TD BNS BMO CIBC NB CW LAU GW MLIFE SL Average

European Banks
DEUTS 12.0 8.7 14.8 10.9 14.9 8.2 7.0 5.3 8.1 17.1 13.8 10.9
COMMER 8.2 3.7 10.1 8.2 9.8 8.5 6.6 6.5 2.6 12.5 5.7 7.5
BARCLAY 13.1 6.1 13.1 12.4 14.6 9.5 4.6 5.4 9.7 9.5 7.5 9.5
UBS 15 9.4 15 17.1 12.7 10.1 10.3 6.1 11.2 14.5 9.1 11.8
BNP 10.5 9 13.5 9.6 10.2 7.8 9.9 3.8 3.8 12.4 12.5 9.3
SOCIETE 6.8 4.4 10.6 7.7 12.0 6.4 4.4 6.3 7.3 9.8 7.7 7.5
BBVA 14.2 11.7 15.1 10.2 20.8 11.5 12.6 2.5 13.5 9.7 9.3 11.9
CREDIT 9.1 6.8 7.4 8.0 8.2 5.6 6.1 2.7 5.4 12.7 8.8 7.3
CSWISS 9.4 7.9 7.4 9.3 7.0 6.9 6.8 3.0 7.9 12.8 15.7 8.5
BANCOS 6.6 7.0 5.9 7.3 4.7 3.6 3.0 0.7 4.2 5.0 10.1 5.3
Column
Average 10.4 7.5 11.2 10 11.4 7.8 7.1 4.2 7.3 11.6 10.1 8.9

Asian Banks
MITSUB 5.9 3.6 5.7 10.3 12.9 6.5 6.5 7.2 9.9 8.6 8.7 7.8
MIZUHO 2.7 2.2 4.9 2.1 7.1 2.1 1.9 9.3 7.2 6.5 9.8 5.1
SUMI 2.0 0.3 3.0 4.1 5.6 4 6.4 4.9 3.4 -0.3 1.8 3.2
Column
Average 3.5 2 4.5 5.5 8.5 4.2 4.9 7.1 6.8 4.9 6.7 5.3
The table reports the increase in the crash probability of the financial institution specified in the column when
the financial institution in the row becomes crash. The crisis level is set to p = 0.05.
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Table 5: Systemic Importance of Individual Banks (%)(4P5|1(1)))
A1 A2 A3 A4 A5 A6 Row Average

Panel a: Canadian six-big banks
RBC 30.6 30.6
TD 29.6 29.6
BNS 32.4 32.4
BMO 29.4 29.4
CIBC 26.7 26.7
NB 27.0 27.0
The average value of Panel a: 29.3
Panel b: Canadian small banks
CW 15.1 15.6 13.2 13.7 15.3 14.3 14.5
LAU 18.5 20.5 16.5 18.7 18.3 14.0 17.7
The average value of Panel b: 16.1
Panel c: Canadian non-bank financial institutions
GW 17.5 21.1 17.1 17.6 15.9 19.6 18.1
MLIFE 23.5 24.2 20.1 20.7 22.2 21.0 21.4
SLIFE 21.2 20.2 19.9 20.6 23.8 22.5 21.9
The average value of Panel c: 20.4
Panel d: the United-State’ banks
JPMORGAN 15.0 17.9 15.5 13.6 17.7 16.7 16.1
CITIG 15.1 17.8 15.4 13.7 14.4 16.6 15.5
BOA 16.2 20.4 16.7 17.2 14.1 17.9 17.1
WELLS 17.4 20.6 19.5 20.1 17.6 22.0 19.4
GOLDMAN 15.4 14.6 15.0 14.2 14.1 18.0 14.2
MORGAN 14.0 15.6 14.2 12.5 13.3 15.6 15.2
The average value of Panel d: 16.7
Panel e: the European banks
DEUTS 15.9 18.2 14.5 14.6 15.6 15.3 15.6
BNP 11.8 10.4 10.3 8.3 13.3 13.7 11.3
BBVA 14.2 16.7 14.7 15.7 11.7 12.1 14.1
BANCOS 5.4 5.6 6.5 4.1 5.1 5.8 5.4
SOCIETE 15.6 14.1 13.2 12.2 12.3 10.5 12.9
UBS AG 14.9 16.8 13 12.1 11.0 18.1 14.3
The average value of Panel e: 12.3
Panel f: the Asian banks
MITSUB 2.2 9.8 11.3 8 5.9 9.6 7.8
MIZUHO 5.1 6.3 5.6 6.3 3.5 5.6 5.4
SUMI 5.0 5.1 4.9 4.1 2.4 4.5 4.3
The average value of Panel f: 5.8
The table reports the increase in the crash probability that at least one bank in
each group in the column become crashed when the institution in the row falls
into crash. The crisis level is set as 0.05. A1={2, 3, 4, 5, 5}, A2={ 1, 3, 4, 5,6},
A3={ 1,2, 4, 5, 6}, A4={ 1, 2, 3, 5, 6}, A5={ 1, 2, 3, 4, 6}, A6={ 1, 2, 3, 4, 5}
where 1,2, ...,6 represent for the banks: RBC, TD, BNS, BMO, CIBC, and NB,
respectfully. 31



Table 6: Systemic Importance of Individual Banks(%)(4P5|1(2)))
A1 A2 A3 A4 A5 A6 Row Average

Panel a: Canadian six-big banks
RBC 35.0 35.0
TD 34.1 34.1
BNS 38.2 38.2
BMO 30.9 30.9
CIBC 29.2 29.2
NB 28.1 28.1
the average of Panel a: 32.5
Panel b: Canadian small banks
CW 19.7 18.2 18.4 16.5 19 18.9 18.4
LAU 22.1 19.2 18.8 18.1 20.8 20.7 19.9
The average of panel b: 19.2
Panel c: Canadian non-bank financial institutions
GW 23.4 19.3 18.5 21.7 17.3 21.1 20.2
MLIFE 19.5 17.3 20.6 21.7 19.5 20.6 19.5
SLIFE 20.7 18.4 19.7 20.8 16 21.9 19.9
The average of Panel c: 19.8
Panel d: The United State’s banks
JPMORGAN 16.6 18.7 20.2 17.6 18.6 17.1 18.1
CITIG 13.6 15.2 16.9 15.7 14.4 16.3 15.3
BOA 16.6 18.3 20.2 18.8 17.4 17.1 18.0
WELLS 22.7 24.6 25.4 23.7 20.6 23.2 23.3
GOLDMAN 13.0 16.5 15.4 15.7 16.3 13.8 15.1
MORGAN 11.4 14.1 12.5 12.4 12.2 11.9 12.4
The average of Panel d: 17.5
Panel e: The European banks
DEUTS 15.0 12.3 13.5 13.1 11.8 16.0 13.6
BNP 12.1 13.2 11.8 13.2 10.7 12.1 12.1
BBVA 1.7 14.7 13.3 15.8 14.2 10.3 13.2
BANCOS 4.5 4.9 5.8 4.8 7.1 3.6 5.1
SOCIETE 8.9 9.1 7.6 9.1 6.7 8.8 8.3
UBS AG 12.3 11.5 15.1 13.4 13.0 15.5 13.4
The average of panel e: 10.9
Panel f: The Asian banks
MITSUB 9.8 10.6 9 9.8 7.9 9.5 9.4
MIZUHO 4.1 4.8 3.3 4.1 4 5.6 4.3
SUMIT 5.3 5.2 5.3 4.8 4.7 5.2 5.0
Panel: The average of Panel f: 6.2
The table reports the increase in the crash probability that at least two banks in
each group in the column become crashed when the institution in the row falls
into crash. The crisis level is set as 0.05. A1={2, 3, 4, 5, 5}, A2={ 1, 3, 4, 5,6},
A3={ 1,2, 4, 5, 6}, A4={ 1, 2, 3, 5, 6}, A5={ 1, 2, 3, 4, 6}, A6={ 1, 2, 3, 4, 5}
where 1,2, ...,6 represent for the banks: RBC, TD, BNS, BMO, CIBC, and NB,
respectfully. 32



Table 7: Systemic Importance of Individual Banks(%)(4P5|1(3)))
A1 A2 A3 A4 A5 A6 Row Average

Panel a: Canadian six-big banks
RBC 34.4 34.4
TD 35.2 35.2
BNS 37.9 37.9
BMO 31.5 31.5
CIBC 29.3 29.3
NB 27.4 27.4
The average of Panel a: 32.6
Panel b: Canadian small banks
CW 20.2 21.4 22.0 20.1 22.7 20.9 21.2
Lau 24.3 22.8 26.4 24.5 24.4 22.3 24.1
The average of Panel b: 22.6
Panel c: Canadian non-bank financial institutions
GW 21.6 21.7 20.6 20.2 23.3 21.1 21.4
MLIFE 28.0 24.3 28.3 25.5 26.1 24.5 26.1
SLIFE 26.4 24.2 25.1 25.4 22.8 25.1 24.8
The average of Panel c: 24.9
Panel d: The United State’s banks
JpMORGAN 18.5 19.5 20.2 17.1 20.7 20.2 19.3
CITIG 13.1 16.1 14.7 13.8 16.1 15.5 14.8
BOA 18.5 18.2 17.8 18.2 19.4 20.1 18.7
WELLS 21.9 23.1 22.4 21.8 20.4 24.0 22.3
GOLDMAN 12.5 15.1 16.2 12.9 15.5 14.9 14.5
MORGAN 13.1 11.6 13.6 10.5 14.9 12.2 12.6
The average of Panel d: 17.7
Panel e: The European banks
DEUTS 12.6 11.7 13.6 12.6 11.2 12.1 12.3
BNP 12.0 10.9 10.8 12.9 11.4 12.5 11.7
BBVA 14.6 15.6 12.3 15.6 14.1 15.1 14.5
BANCOS 5.6 6.6 4.4 5.7 6.2 7.8 6.1
SOCIETE 6.3 7.3 7.6 6.3 7.8 7.8 7.1
UBS 13.4 14.4 13.9 13.3 14.8 14.9 14.1
The average of Panel of e: 10.8
Panel f: The Asian banks
MITSUB 8.1 9.1 9.2 7.1 7.0 8.1 8.1
MIZUHO 5.1 2.2 2.2 3.7 1.5 2.9 2.9
SUMIT 2.8 3.9 3.8 2.8 2.3 2.9 3.1
The average of Panel f: 4.7
The table reports the increase in the crash probability that at least three banks in
each group in the column become crashed when the institution in the row falls
into crash. The crisis level is set as 0.05. A1={2, 3, 4, 5, 5}, A2={ 1, 3, 4, 5,6},
A3={ 1,2, 4, 5, 6}, A4={ 1, 2, 3, 5, 6}, A5={ 1, 2, 3, 4, 6}, A6={ 1, 2, 3, 4, 5}
where 1,2, ...,6 represent for the banks: RBC, TD, BNS, BMO, CIBC, and NB,
respectfully. 33



Table 8: Systemic Importance of Individual Banks(%)(4P5|1(4)))
A1 A2 A3 A4 A5 A6 Row Average

Panel a: Canadian six-big banks
RBC 33.4 33.4
TD 31.0 31.0
BNS 32.5 32.5
BMO 29.6 29.6
CIBC 27.4 27.4
NB 26.1 26.1
The average of Panel a: 30
Panel b: Canadian small banks
CW 21.7 20.2 24.5 21.5 24.8 24.1 22.8
Lau 21.8 23.6 18.4 20.4 20.7 25.5 22.7
The average of Panel b: 23.3
Panel c: Canadian non-bank financial institutions
GW 21.1 21.2 23 21.1 21.5 19.7 21.2
MLIFE 22.4 25.9 23.6 27.8 23.3 25.3 24.7
SLIFE 23 24.1 24.9 27.1 23.4 23.7 24.3
The average of Panel c: 23.4
Panel d: The United State’s banks
JpMORGAN 18.1 17.9 16 19.1 18.6 20.1 18.3
CITIG 14.9 16.7 15.3 15.6 14.3 15.3 15.4
BOA 15.7 17.9 16 14.3 17.4 16.5 16.3
WELLS 22.8 24.1 22.9 21.4 23.3 23.9 23.0
GOLDMAN 9.5 12.5 9.3 12.7 8.9 13.3 11.0
MORGAN 13.8 14.6 13.1 13.5 14.3 14.2 13.9
The average of Panel d: 16.8
Panel e: The European banks
DEUTS 11.1 11 9.6 11.9 10.1 11.4 10.8
BNP 9.7 9.8 9.2 10.7 8.7 11.3 9.9
BBVA 13.4 12.5 10.9 14.4 11.5 13 12.6
BANCOS 7.3 6.3 5.9 8.1 6.4 6.6 6.7
SOCIETE 6.4 6.5 5 7.4 5.5 6.9 6.2
UBS 11.2 12.1 11.6 11.1 11.0 12.7 11.6
The average of Panel e: 9.4
Panel f: The Asian banks
MITSUB 8.6 7.6 7.5 7.6 7.8 6.8 7.6
MIZUHO 3.1 3.8 3.7 3.8 2.3 3.0 3.2
SUMIT 2.7 2.1 2.2 2.1 2.2 1.6 2.1
The average of Panel f: 4.3
The table reports the increase in the crash probability that at least four banks in
each group in the column become crashed when the institution in the row falls
into crash. The crisis level is set as 0.05. A1={2, 3, 4, 5, 5}, A2={ 1, 3, 4, 5,6},
A3={ 1,2, 4, 5, 6}, A4={ 1, 2, 3, 5, 6}, A5={ 1, 2, 3, 4, 6}, A6={ 1, 2, 3, 4, 5}
where 1,2, ...,6 represent for the banks: RBC, TD, BNS, BMO, CIBC, and NB,
respectfully. 34



Table 9: Systemic Importance of Individual Banks(%)(4P5|1(5))

A1 A2 A3 A4 A5 A6 Row Average
Panel a: Canadian six-big banks
RBC 23.8 23.8
TD 24.6 24.6
BNS 23.1 23.1
BMO 20.7 20.7
CIBC 18.7 18.7
NB 21.5 21.5
The average of Panel a: 22.1
Panel b: Canadian small banks
CW 14.4 18.1 14.3 13.5 14.2 17.8 15.3
LAU 10.7 16.7 10.6 11.4 10.9 15.2 12.7
The average of Panel b: 14
Panel c: Canadian non-bank financial institutions
GW 16.7 16.8 16.6 15.7 15.2 22.1 17.1
MLIFE 13.3 12.5 12.3 14.3 13.4 17.3 13.9
SLIFE 14.5 16.2 14.5 15.7 15.5 18.6 15.8
The average of Panel c: 15.6
Panel d: The United State’s banks
JpMORGAN 12.5 13.2 12.5 12.8 12.3 16.8 13.4
CTIGI 10.1 12.7 10.1 10.8 9.7 13.3 11.1
BOA 11.3 12.1 11.3 12.8 11.1 13.2 11.9
WELLS 15.9 15.7 15.9 16.3 18.2 20.6 17.1
GOLDMAN 9.1 13.8 9.2 8.5 16.2 16.6 12.2
MORGAN 11.3 9.4 11.3 12.5 10.8 14.4 11.6
The average of Panel d: 12.8
Panel e: The European banks
DEUTS 2.9 3.8 2.9 2.9 2.4 3.7 3.1
BNP 1.0 2.1 1.1 1.2 1.6 0.7 1.3
BBVA 7.9 6.9 7.9 6.9 6.9 7.8 7.4
BANCOS 1.2 0.5 1.3 1.2 1.5 0.3 1.0
SOCIETE 0.4 1.3 0.5 0.4 0.2 1.6 0.7
UBS AG 4.5 6.6 4.5 5.1 5.5 6.7 5.4
The average of Panel e: 3.2
Panel f: Asian banks
MITSUB 2.2 4.3 2.3 2.2 3.3 4.5 3.1
MIZUHO 1.2 1.9 1.3 1.2 2.6 1.7 1.6
SUMIT 1.3 2.4 0.8 1.1 1.8 0.9 1.3
The average of Panel f: 2
The table reports the increase in the crash probability that all five banks in
each group in the column become crashed when the institution in the row falls
into crash. The crisis level is set as 0.05. A1={2, 3, 4, 5, 5}, A2={ 1, 3, 4, 5,6},
A3={ 1,2, 4, 5, 6}, A4={ 1, 2, 3, 5, 6}, A5={ 1, 2, 3, 4, 6}, A6={ 1, 2, 3, 4, 5}
where 1,2, ...,6 represent for the banks: RBC, TD, BNS, BMO, CIBC, and NB,
respectfully. 35
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Figure 1 reports the increase in the risk that all other financial become crashed when a specific institution falls into crash.
For comparison, the average of the extreme Corisk between this specific institution and all other institutions is also reported 
in this figure.  Figure 2 reports the increase in the risk from the simultaneous collapse of at least r (r=1, 2, 3) institutions 
conditional on the collapse of a specific institution.
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Figure 3 reports the increase in the crash probability that at least r banks of the big five Canadian banks become
 crashed when one bank (labeled in horizontal axis)crashes. Figure 4 reports the incraese in the crash probability
 that at least $r$ banks of the big five U.S.. banks become crashed  when one bank (labeled in horizontal axis) 
crashes. (r=1, 2, 3).
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