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Abstract

As the recent financial crisis has shown, the structure and dynamics of interbank markets
have to be taken into account when assessing the resilience of the financial system. Network-
and multi-agent models of banking systems are particularly useful for this task. This paper
proposes a dynamic multi-agent model of a banking system where banks optimize a port-
folio of risky investments and riskless excess reserves according to their risk and liquidity
preferences. They are endogenously linked via interbank loans and face a stochastic supply
of household deposits. The goal of this paper is to use this model to answer three key ques-
tions about the impact of the network structure on financial stability. First, how efficient is
the central bank in stabilizing interbank markets with different network structures during
a crisis? Second, which network structures are most resilient to financial distress and thus
most desirable from a financial stability point of view? And third, given a specific network
structure, what form of systemic risk poses a greater threat to financial stability: interbank
contagion or common shocks?
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1. Introduction

The recent financial crisis has highlighted the necessity to understand systemic risk both
qualitatively and quantitatively in order to safeguard financial stability. Bandt et al. (2009)
provide a categorization of systemic risks, distinguishing between a broad and a narrow
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sense. In their nomenclature, contagion effects on interbank markets pose a systemic risk
in the narrow sense, whereas the broad sense of systemic risk is characterized as a common
shock that affects many institutions at once. The crisis has shown that systemic risk not
only can take many forms, but is also highly dynamic: slowly building up in normal times,
but rapidly emerging during times of distress. The insolvency of the US investment bank
Lehman Brothers in September 2008 marked the tipping point between the build up and
rapid manifestation of systemic risks and lead to a freeze in interbank markets. As a conse-
quence, the risk premia for unsecured interbank loans increased drastically, which resulted
in a massive impairment of banks’ liquidity provision. Governments and central banks were
forced to undertake unprecedented non-standard measures to reduce money market spreads
and ensure liquidity provision to the banking system.2 This shows that central banks are key
actors for the functioning of interbank markets, even though they do not directly participate
in them. To motivate central bank interventions, already Goodfriend and King (1988) could
show that open market operations enhance the liquidity provision in the financial system.
More recently, Allen et al. (2009) and Freixas et al. (2010) show that central bank interven-
tion can increase the efficiency of interbank markets. It is thus clear, that every realistic
model of interbank markets has to feature the central bank as one key actor.

Interbank markets exhibit what Haldane (2009) denotes as a knife-edge, or robust-yet-fragile
property. In normal times, the connections between banks lead to an enhanced liquidity al-
location and increased risk sharing amongst financial institutions. This was shown by Allen
and Gale (2000) who extend the classical bank-run model by Diamond and Dybvig (1983)
and show that highly interconnected banking systems are less prone to bank-runs. Dasgupta
(2004) confirms this result and determines the optimal level of interconnectedness in a bank-
ing system. In times of crisis, however, the same interconnections can amplify shocks that
spread through the system. This was shown i.e. by Gai and Kapadia (2008), who investigate
systemic crises with a network model and show that on the one hand, the risk of systemic
crises is reduced with increasing connectivity on the interbank market. On the other hand,
however, the magnitude of systemic crises increases at the same time. This knife-edge prop-
erty of interbank markets can be attributed to a counterparty risk externality. Acharya and
Bisin (2010) compare over-the-counter (OTC) and centralized clearing markets in a general
equilibrium model. They show that the intransparency of OTC markets is ex-ante inefficient
and attribute this to a counterparty risk externality. This externality can best be illustrated
in a small example. Assume a simple banking network that consists of three banks (A,B, and
C) where bank A has issued uncollateralized interbank loans to banks B and C. The interest
rate on the interbank loans will include a risk premium to capture counterparty risk. Now
assume that B has issued another interbank loan to C. This will increase the counterparty
risk of bank B, as B is now vulnerable to a default of bank C. However, bank A is not
aware of this increase and will thus underprice the counterparty risk. Thus, the structure of
financial networks and especially interbank networks is relevant for the analysis of systemic

2For an overview of the immediate crisis reaction of governments and central banks, see i.e. Cecchetti
(2009) for the United States and Petrovic and Tutsch (2009) for the European Union.
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risk. Taking this into account, the question arises, if there exist network structures that are
less prone to the counterparty externality and hence more resilient to financial distress.

The counterparty risk externality makes it clear that the network structure of financial
system plays an important role when assessing systemic risk. An overview of the existing
literature on financial networks can be found i.e. in Allen et al. (2010) and European Cen-
tral Bank (2010). The network structure of interbank markets can be best captured in an
exposure matrix where the issuance of a loan from bank i to bank j is denoted as the loan
size in row i and column j. Using such a matrix, Eisenberg and Noe (2001) show that a
unique clearing payment vector exists and analyze the spreading of contagious defaults in
general network topologies. The difference to this paper is that we develop a dynamic model
of cascading bank defaults, while Eisenberg and Noe (2001) calculate the impact of a default
in a static network structure. Empirical analyses of the interbank network structure exist
for for a number of countries.3 It is shown that interbank networks often exhibit a scale-free
topology, i.e. they are characterized by few money center banks with many interconnections
and many small banks with few connections. Sachs (2010) follows the static approach of
Eisenberg and Noe, but also compares contagion effects in scale-free networks and random
networks and finds that contagion is more pressing in scale-free networks. What is missing in
the literature, however, is a dynamic analysis of the financial stability properties of different
network topologies.

The crisis revealed that there also exist other externalities besides the counterparty risk
externality. One of them being a correlation externality between banks’ portfolios. Securiti-
zation was designed to distribute risks from within the banking system to investors outside
the banking system. A thorough analysis, however, shows that a significant part of the
securitized risk was still residing within the banking system at the peak of the crisis (see
i.e. Krishnamurthy (2008)). As a consequence, a strong correlation between banks’ assets
arised. As banks are unaware of the portfolio of competing banks, they cannot assess this
correlation and thus choose non-optimal levels of correlation for their portfolios. This ex-
ternality could thus be best described as a correlation externality. A large extend of the
literature on systemic risk in interbank markets has focused on the analysis of contagion
effects (i.e. studying the counterparty risk externality). Recently, more attention has been
given to the correlation externality and the analysis of common shocks as sources of systemic
risk. Acharya and Yorulmazer (2008) point out how banks are incentivized to increase the
correlation between their investments and thus the risk of an endogenous common shock in
order to prevent costs arising from potential information spillovers. The increasing correla-
tion in the financial sector is also verified empirically. De Nicolo and Kwast (2002) analyze

3The topology of the interbank has been analyzed i.e. in the United States (Furfine (1999)), the Euroarea
(Gabrieli (2010), Gabrieli (2011)), the United Kingdom (Wells (2004), Becher et al. (2008)), Brazil (Cajueiro
and Tabak (2007), Chang et al. (2008)), Italy (Mistrulli (2007), Iori et al. (2008), Manna and Iazzetta (2009)),
Switzerland (Sheldon and Maurer (1998)), Sweden (Bl̊avarg and Nimander (2002)), Belgium (Degryse and
Nguyen (2007)), the Netherlands (van Lelyveld and Liedorp (2004)), Austria (Boss et al. (2004b)) and South
Africa (Brink and Georg (2011)).
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the increase in the correlation between large and complex financial organizations during the
1990s, a development that was further fueled by securitization. The new insights on com-
mon shocks give rise to the question which form of systemic risk poses the greater threat to
financial stability: interbank contagion caused by the counterparty externality, or common
shocks caused by the correlation externality. Thus far, no comparison of the different sys-
temic risk manifestations in a single model has been conducted in the literature. This paper
aims to close this gap by explicitely comparing the impact of different shocks resulting from
the two externalities.

One particularly useful class of models to analyze the above mentioned questions are multi-
agent simulations. Iori et al. (2006) develop a network model of a banking system, where
agents (banks) can interact with each other via interbank loans. The balance sheet of banks
consits of risk-free investments and interbank loans as assets, and deposits, equity and in-
terbank borrowings as liabilities. Banks channel funds from depositors towards productive
investment. They receive liquidity shocks via deposit fluctuations and pay dividends if pos-
sible. Nier et al. (2007) describe the banking system as a random graph where the network
structure is determined by the number of nodes (banks) and the probability that two nodes
are connected. The banks’ balance sheet consists of external assets (investments) and inter-
bank assets on the asset side and net worth, deposits, and interbank loans as liabilities. Net
worth is assumed to be a fixed fraction of a bank’s total assets and deposits are a residual,
designed to complete the bank’s liabilities side. Shocks that hit a bank and lead to its de-
fault are distributed equally amongst the interbank market. The authors find, that (i) the
banking system is more resilient to contagious defaults if its banks are better capitalized
and this effect is non-linear; (ii) the effect of the degree of connectivity is non-monotonic;
(iii) the size of interbank liabilities tend to increase the risk of a knock-on default; and (iv)
more concentrated banking systems are shown to be prone to larger systemic risk. More
recently, Ladley (2011) analyzes the impact of the interbank network heterogeneity on sys-
temic risk in a multi-agent setting. The balance sheet of banks consists of equity, deposits,
cash reserves, loans to the non-bank sector and interbank loans. Ladley considers risky in-
vestment opportunities and explicitely models how banks attract deposits by choosing their
offered deposit interest rates. Banks determine the optimal structure of their portfolio via
a genetic algorithm. He finds that that for small shocks, high interconnectivity helps sta-
bilizing the system, while for large shocks high interconnectivity amplifies the initial impact.

This paper wants to answer the aforementioned questions about the impact of the network
structure on financial stability by developing a dynamic model of a banking system. Banks
optimize a portfolio of risky investments and riskless excess reserves. Risky investments
are long-term investment projects that fund an unmodelled firm sector while riskless excess
reserves are short-term and held at the deposit facility of the central bank. Banks face a
stochastic supply of household deposits and stochastic returns from risky investments. This
gives rise to liquidity fluctuations and initiates the dynamic formation of an interbank loan
network. Banks have furthermore access to central bank liquidity if they can provide suffi-
cient collateral. This model is used to first analyze the impact that the provision of central
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bank liquidity has on financial stability. It is shown that the central bank can stabilize the
financial system in the short-run. In the long-run, however, the system always converges
to the equilibrium state. Possible network structures will be given at the beginning of each
simulation. They reflect contractual agreements amongst banks and determine the set of
possible interbank loans. The realized network structure at each point in time is a subset of
the possible network structure (i.e. the set of existing edges at any point in time is a subset
of the set of possible edges). This closely resembles the situation in reality, where the day-
to-day topology of interbank networks also varies from the monthly or quaterly aggregated
network structures that are analyzed in the literature. Different possible network structures
are compared, and it is shown that in random graphs, the relationship between the degree
of interconnectivity and financial instability is non-monotonic. Scale-free networks are seen
to be more stable than small-world networks, which in turn tend to be more stable than
random networks. Thus, the effect of contagion is exagerrated in the literature, as most
papers assume random networks and most real-world interbank networks are scale-free. The
model captures key effects of the dynamics of interbank networks and can thus be used to
analyze the impact of different externalities on financial stability. The counterparty risk
externality is compared to the correlation externality and it is shown that, contrary to their
importance in the literature, common shocks are not subordinate to interbank contagion.
Finally, a number of policy conclusions for the optimal reaction to financial crises, as well
as for the monitoring and regulation of systemic risk are drawn from the model.

The remainder of this paper is organized as follows. After this introduction, section two
describes the dynamic model that has been used to analyze the aforementioned questions.
Section three will present the main results, while section four derives some policy implications
and concludes.

2. The Model

This section wants to outline some key features that all models of systemic risk should in-
corporate and develop a dynamic model of a banking system that can be used to analyze the
impact of the interbank network structure on financial stability. Firstly, deposit fluctuations
have to be included for two reasons: (i) Because of the maturity transformation that banks
perform and since deposits usually have a short maturity, deposit fluctuations can lead to
illiquidity. Banks that become illiquid will have to liquidate their long-term investments
at steep discounts (for a model that describes this mechanism, see i.e. Uhlig (2010)). Due
to marked-to-market accounting, these steep discounts will lead to losses in banks’ trad-
ing books and have to be compensated by banking capital. Thus, illiquidity can lead to
insolvency. (ii) As deposit fluctuations are generally considered to be one of the reasons
why banks engage in interbank lending (see i.e. Allen and Gale (2000), Dasgupta (2004)),
they have to be included into all models of systemic risk. Without deposit flucutations
as a driving force for the formation of interbank networks, it is impossible to describe the
counterparty risk externality in a dynamic setting. Secondly, as fluctuations in investment
returns have to be compensated by banking capital, risky investments are a major cause
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of bank insolvencies. Without risky investments, it is impossible to model the correlation
externality as it arises precisely in a situation when the returns of risky assets of a number
of banks have negative realizations at the same time. In order to model common shocks,
risky investments have thus to be taken into account.

Iori et al. (2006) and Nier et al. (2007) develop multi-agent models of a banking system,
but assume a risk-free investment opportunity. Nier et al. (2007) further assume deposits
to be residual. I follow both papers in some aspects and develop a network model of inter-
bank markets. However, I explicitely allow the possibility of risky investments and deposit
fluctuations. I furthermore include a central bank in the model, since it is evident from the
literature that monetary policy has a large influence on the stability of interbank markets.
This model allows the investigation of direct contagion effects as well as common shocks.
This is another difference to the existing literature, which exclusively focuses on individual
forms of systemic risk.

2.1. Balance Sheets

The balance sheet of a bank k holds risky investments Ik and riskless excess reserves Ek as
assets at every point in (simulation-) time t = 1 . . . τ . The investments of bank k have a
random maturity4 τ kI > 0 and I assume that each bank finds enough investment opportunities
according to its preferences. The bank refinances this portfolio by deposits Dk (which are
stochastic and have a maturity of zero), from which it has to hold a certain fraction rDk

of required reserves at the central bank, fixed banking capital BCk, interbank loans Lk and
central bank loans LCk. Interbank loans and central bank loans are assumed to have a
maturity of τ kL = τ kLC = 0. The maturity mismatch between investments and deposits is
the standard maturity transformation of commercial banks. Interbank loans can be positive
(bank has excess liquidity) or negative (bank has demand for liquidity), depending on the
liquidity situation of the bank at time t. The same holds for central bank loans, where the
bank can use either the main refinancing operations to obtain loans, or the deposit facility
to loan liquidity to the central bank. The balance sheet of the commercial bank therefore
reads as:

Ikt + Ek
t = (1− r)Dk

t +BCk
t + Lk

t + LCk
t (1)

The interest rate for deposits at a bank is rd and the interest rate for central bank loans is
rb. Note that there is no distinction between an interest rate for the lending and deposit
facility and therefore the interest rate on the interbank market will be equal to the interest
rate for central bank loans.

The banks decide about their portfolio structure and portfolio volume. A constant relative
risk aversion (CRRA) utility function is assumed to model the bank’s preferences:

uk =
1

1− θk

(
V k(1 + λkµk −

1

2
θk(λk)2(σ2)k)

)(1−θk)

(2)

4Maturity τ implies that the asset matures in τ + 1 update steps.
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where λk is the fraction of the risky part of the portfolio, µk is the expected return of the
portfolio and θk is the banks risk aversion parameter. V k

t = Ikt + Ek
t denotes the bank’s

portfolio volume. The risky part of the portfolio follows from utility maximisation and reads
as:

(λk)∗ = min

{
µk

θk(σ2)k
, 1

}
∈ [0, 1] (3)

The portfolio volume can be obtained by similar measures as:

(V k)∗ =

[
1

rb

((
1 + λkµk −

1

2
θk(λk)2(σ2)k

)(1−θk)
)]1/θk

(4)

where rb denotes the refinancing cost of the portfolio. Since banks obtain financing on
the interbank market and at the central bank at the same interest rate, this refinancing
cost is equal to the main refinancing rate. It is possible to introduce a spread between the
lending and deposit facility and therefore allowing the interest rate on the interbank market
to stochastically vary around the main refinancing rate. If a bank now plans its optimal
portfolio volume, it calculates with a planned refinancing rate. This refinancing rate follows
from the banks plan about how much interbank loans it wants to obtain on the interbank
market at a planned refinancing rate and how much central bank loans it plans to obtain at
the main refinancing rate. If this plan cannot be realized (e.g. if a bank’s liquidity demand
is unsatisfied on the interbank market), banks make a non-optimal portfolio choice. This
possibility is excluded for the sake of simplicity. Note, that a market for central bank money
is not explicitely modelled. The central bank rather accomodates all liquidity demands of
commercial banks, as long as they can provide the neccessary securities. This assumption is
not unrealistic in times of crises, as for example the full allotment policy of the ECB shows.

2.2. Update Algorithm

In the simulation I have implemented an update algorithm that determines how the system
evolves from one state to another. The algorithm is divided up into three phases that are
briefly described here. Every update step is done for all banks for a given number of sweeps.
At the beginning of phase 1 the bank holds assets and has liabilities from the end of the
previous period:

Ikt−1 + Ek
t−1 + rDk

t−1 = Dk
t−1 +BCk

t−1 + Lk
t−1 + LCk

t−1 (5)

where an underline denotes realized quantities. In period 0 all banks are endowed with
initial values. The update step starts with banks getting the required reserves rDk

t−1 and
excess reserves Ek

t−1 plus interest payment from the central bank (it is assumed that for both
required and excess reserves an interest of rb is paid). The banks obtain a stochastic return
for all investments Ikt−1 which might be either positive or negative. The firms furthermore
pay back all investments Ikf that were made in a previous period and have a maturity of
τ kI = 0. The banks then pay interest for all deposits that were deposited in the previous
period. After that the banks can either receive further deposits from the households, or
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Figure 1: Interaction dynamics of the model. The private sector (household/firms), the banking sector
(commercial banks) and the central bank interact via the exchange of deposits, investments, loans, excess-
and required reserves and central bank loans. Arrows indicate the direction of fund flows.

suffer deposit withdrawings ∆Dk
t . At the end of the first period, all interbank and central

bank loans plus interests are paid either to, or by bank k.

At the beginning of phase 2, the bank’s liquidity Q̂k is therefore given as:

Q̂k
t = (1 + rb)

[
rDk

t−1 + Ek
t−1

]
+ µkIkt−1 + Ikf − rdDk

t−1 ±∆Dk
t (6)

−(1 + rb)
[
Lk
t−1 + LCk

t−1

]
+BCk

t−1

All banks with Q̂k
t < 0 are marked as illiquid and removed from the system. Banks that

pass the liquidity check now have to pay required reserves rDk
t to the central bank.

In phase 3 the bank k determines it’s planned level of investment Ikt = (λk)∗(V k)∗ and excess
reserves Ek

t = (1− (λk)∗)(V k)∗ according to equations (3) and (4). From this planned level
and the current level of investments (all investments that were done in earlier periods and
have a maturity τ kI > 0), as well as the current liquidity (6) the bank determines its liquidity
demand (or supply). If a bank has a liquidity demand, it will go first to the interbank market,
where it asks all banks i that are connected to k (denoted as i : k), if they have a liquidity
surplus. In this case the two banks will interchange liquidity via an interbank loan. The
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convention is adpotet that a negative value of L denotes a demand for liquidity and therefore
the interbank loan demand of bank k is given by:

Lk
t = Q̂k

t − Ikt (7)

From this, one can obtain the realized interbank loan level, via the simple rationing mecha-
nism:

Lk
t = min

{
Lk
t , −

∑
i:k L

i
t | Li

t · L
k
t < 0 ; if Lk

t > 0

−Lk
t ,

∑
i:k L

i
t | Li

t · L
k
t < 0 ; if Lk

t < 0

}
(8)

Now there are three cases, depending on the bank’s liquidity situation. If a bank has neither
a liquidity demand nor excess liquidity, it will not interact with the central bank and this
step is skipped. However, if the bank still has a liquidity demand, it will ask for a central
bank loan:

LCk
t = Lk

t − Lk
t (9)

The central bank then checks if the bank has the neccessary securities and if so, it will
provide the loan:

LCk
t = max

(
LCk

t ,−αkIkt−1

)
(10)

where αk ∈ [0, 1] denotes the fraction of investments of bank k that are accepted as se-
curities by the central bank. If a bank has insufficient securities, the central bank will not
provide the full liquidity demand and the bank has to reduce the planned investment and ex-
cess reserve level. If the bank has no securities (no investments Ikt−1), it cannot borrow from
the central bank. This rationing mechanism maps planned investment levels to realized ones.

The second case is that a bank has a large liquidity surplus even if all planned investments
can be realized. In this case, the bank is able to pay dividends Ak

t and the dividend payment
is determined by:

Ak
t = min

{
LCk

t , β
kIkt
}

(11)

where βk ∈ [0, 1] is the dividend level of bank k. The dividend level will typically be close to
1 as shareholders will push the bank to rather pay dividends than use the money to deposit
it at the central bank at low interest rates. The remaining:

LCk
t = LCk

t − Ak
t (12)

is transferred to the central bank’s deposit facility. Finally the realized investments are
transferred to the firm sector and the realized excess reserves are transferred to the central
bank.

These steps are done for all k = 1 . . . N banks in the system for t = 1 . . . τ time steps.
As there are two stochastic elements in the simulation (the return of investments and the
deposit level) two channels for a banks insolvency are modelled. The first channel is via
large deposit withdrawals. As deposits are very liquid and investments are illiquid for a
fixed, but random investment time, this maturity transformation might lead to illiquidity
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and therefore to insolvency. The second channel for insolvency is via losses on investments.
If the banks banking capital is insufficient to cover losses from a failing investment, this bank
will be insolvent. If a bank fails, all the banks that have loaned to this bank will suffer losses,
which they have to compensate by their own banking capital. This is a possible contagion
mechanism, where the insolvency of one bank leads to the insolvency of other banks, that
would have survived if it was not for the first bank’s insolvency. The impact of the contagion
effect will depend on the precise network structure of the interbank market at the time of
the insolvency.

2.3. Network theory

A financial network consists of a set of banks (nodes) and a set of relationships (edges)
between the banks. Even though many relationships exist between banks, this paper focuses
on relationships that stem from interbank lending. For the originating (lending) bank the
loan will be on the asset side of its balance sheet, while the receiving (borrowing) bank will
hold the loan as a liability. To describe the toplogy of a network, some notions from graph
theory are helpful. The starting point is the definition of a graph.

Definition 1. A (un)directed graph G(V,E) consists of a nonempty set V of vertices and
a set of (un)ordered pairs of vertices E called edges. If i and j are vertices of G, then the
pair ij is said to join i and j.

One sometimes speaks of graphs as networks and the two terms are often used interchangably.
Since the focus of this paper is on interbank markets, the nodes of a network are (commercial)
banks and the edges are interbank loans between two banks. For every graph a matrix of
bilateral exposures which describes the exposure of bank i to bank j can be constructed.

Definition 2. The matrix of bilateral exposures W (G) = [wij ] of an interbank market G
with n banks is the n× n matrix whose entries wij denote bank i’s exposure to bank j. The
assets ai and liabilities li of bank i are given by ai =

∑n
j=1wij and lj =

∑n
j=1 wji.

Closely related to the matrix of bilateral exposures is the adjacency matrix that describes
the structure of the network without referring to the details of the exposures.

Definition 3. The entries aij of the adjacency matrix A(G) are one if there is an exposure
between i and j and zero otherwise.

One can define the interconnectedness of a node as the in- and out-degree of the node.

Definition 4. The in-degree din(i) and out-degree dout(i) of a node i are defined as:

din(i) =
n∑

j=1

aji , dout(i) =
n∑

j=1

aij (13)

and give a measure for the interconnectedness of the node i in a directed graph G(V,E). The
two degrees are equal for directed graphs.
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One can define the size of a node i analogously to its interconnectedness in terms of the
value in- and out-degree.

Definition 5. The value in- and out-degree of a node are defined as:

vdcin(i) =

∑n
j=1 wji∑n

k=1

∑n
j=1 wkj

∈ [0, 1] (14)

vdcout(i) =

∑n
j=1 wij∑n

k=1

∑n
j=1 wjk

∈ [0, 1] (15)

and give a measure for the size of the node. The value in-degree is a measure for the liabilities
of a node while the value out-degree is a measure for its assets.

A quantity that can be used to characterise a network is its average path length. The average
path length of a network is defined as the average length of shortest paths for all pairs of
nodes i, j ∈ V . Another commonly used quantity to describe the topology of a network is
the clustering coefficient, introduced by Watts and Strogatz (1998) in their seminal work on
small-world networks. Given three nodes i, j and k, with i lending to j and j lending to k,
then the clustering coefficient can be interpreted as the probability that i lends to k as well.
For i ∈ V , one define the number of opposite edges of i as:

m(i) := |{j, k} ∈ E : {i, j} ∈ E and {i, k} ∈ E| (16)

and the number of potential opposite edges of i as:

t(i) := d(i)(d(i)− 1) (17)

where d(i) = din(i)+dout(i) is the degree of the vertex i. The clustering coefficient of a node
i is then defined as:

c(i) :=
m(i)

t(i)
(18)

and the clustering coefficient of the whole network G = (V,E) is defined as:

C(G) :=
1

|V ′|

∑

i∈V ′

c(i) (19)

where V ′ is the set of nodes i with d(i) ≥ 2. The average path length of the whole network
can be defined for individual nodes. The single source shortest path length of a given node
i is defined as the average distance of this node to every other node in the network.

It is possible to distinguish between a number of networks by looking at their average path
length and clustering coefficient. One extreme type of networks are regular networks which
exhibit a large clustering coefficient and a large average path length. The other extreme
are random networks which exhibit a small clustering coefficient and a small average path
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length. Watts and Strogatz (1998) define an algorithm that generates a network which is
between these two extremes. They could show that the so-called “small-world networks”
exhibit both, a large clustering coefficient and small average path length. A large number
of real networks like the neural network of the worm Caenorhabditis elegans, the power grid
of the western United States, and the collaboration graph of film actors are small-world
networks. From a systemic risk perspective, small-world networks are interesting, as it is
reasonable to assume that the short average path length and high clustering of small-world
networks make them more vulnerable to contagion effects than random or regular networks.
Small-world networks can be created by using the algorithm defined in Watts and Strogatz
(1998). Starting point is a regular networks of N nodes where each node is connected to
its m neighbours. The algorithm now loops over all links in the network and rewires each
link with a probability β. For small values of β (about 0.01 to 0.2) the average path length
drops much faster than the clustering coefficient so one can have a situation of short average
path length and high clustering. A small-world network is shown on the left side of Figure
(2) with N = 50, k = 4, β = 0.05.

Another interesting class of networks are scale-free networks. They are characterized by
a logarithmically growing average path length and approximately algebraically decaying
distribution of node-degree (in the case of an undirected network). They were originally
introduced by Barabási and Albert (1999) to describe a large number of real-life networks
as e.g. social networks, computer networks and the world wide web. To generate a scale-free
network one starts with an initial node and continues to add further nodes to the network
until the total number of nodes is reached. Each new node is connected to k other nodes in
the network with a probability that is proportional to the degree of the existing node. When
thinking about financial networks, this preferential attachment resembles the fact that larger
and more interconnected banks are generally more trusted by other market participants and
therefore form central hubs in the network. On the right side of Figure (2) a scale-free
network with N = 50 and k = 2 is shown.

A typical feature of scale-free networks is their degree-distribution, as it typically follows a
power-law. The exponent of the power-law can be measured and characterises the network
topology for different networks. Boss et al. (2004a) show that the degree distribution of the
Austrian interbank market follows a power law with an exponent of γ = −1.87. Cajueiro
and Tabak (2007) analyze the topology of the Brazilian interbank market. They show that
the Brazilian interbank market employs a scale-free toplogy and is characterized by money-
center banks. Iori et al. (2008) and Manna and Iazzetta (2009) report that the Italian
interbank market shows a similiar scale-free behaviour. Cont and Moussa (2009) show that
a scale-free interbank network will behave like a small-world network when Credit Default
Swaps (CDS) are introduced. In this sense a CDS acts as a “short-cut” from one part of the
network to another. This paper therefore focuses on these three classes of networks (random,
scale-free and small-world) to analyze their effect on systemic risk through contagion effects.
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Figure 2: On the left: a small-world network that was created using the algorithm of Watts and Strogatz
(1998) with N = 50, k = 4 and β = 0.05. On the right: a scale-free network that was created using the
methodology introduced in Barabási and Albert (1999) with N = 50 and m = 2. The colour is an indication
for the single source shortest path length of the node and ranges from white (large) to red (short).

2.4. Model Parameters

There are eighteen model parameters that control the numerical simulation. If not stated
otherwise, numerical simulations were performed with the parameters given in this section.
The simulations were perfomred with N = 100 banks and τ = 1000 update steps each. Ev-
ery simulation was repeated numSimulations=100 times to average out stochastic effects.
The interest rate on the interbank market was chosen to be rd = 0.02 and the main refi-
nancing rate as rb = 0.04. The required reserve rate is r = 0.02. The interbank connection
level for random graphs is denoted as connLevel∈ [0, 1]. At a connLevel=0 there is no
interbank market and at connLevel=1 every bank is connected to every other bank. For
scale-free networks the parameters m = 1, 2, 4, 10 and for small-world networks the param-
eters β ∈ [0.001, 0.1] were used.

Two sets of parameters are used to describe the influence of the real economy on the model.
The first set is the probability that a credit is returned successful, pf = 0.97. The return for
a successful returned credit is ρ+f = 0.09 and in case a credit defaults, the negative return

on the investment is ρ−f = −0.05. This set of parameters will sometimes be referred to as

“normal” parameters. As “crisis” parameters ρ+f = 0.97 and ρ−f = −0.08 were used. To
plan their optimal portfolio, the banks have an expected credit success probability pb and
expected credit return ρ+b . It is assumed that these expected values correspond to the true
values from the real economy. The optimal portfolio structure and volume of a bank depends
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Figure 3: The effect of central bank activity for different scenarios. Top: crisis scenario. Bottom: normal
scenario. Left: number of active banks over simulation time. Right: interbank loan volume over simulation
time. The central bank activity αk varied between αk ∈ [0.0, 1.0].

also on its risk aversion parameter θ. For each bank, θ ∈ [1.67, 2.0] was chosen randomly to
account for heterogeneity in the banking sector.

Deposit fluctuations ∆Dk
t were modelled as:

∆Dk
t = (1− γk + 2γkx)Dk

t−1 (20)

with γk = 0.02 (in “normal” times) and γk = 0.1 (during a “crisis” period) can be interpreted
as a scaling parameter for the level of deposit fluctuations and x being a random variable with
x ∈ [0, 1]. The fraction of a banks investments that the central bank accepts as securities is
set to αk = 0.8, assuming that banks invest only in assets which have a good rating. The
level of dividends βk that a bank pays to its shareholders was chosen as βk = 0.99.

3. Results

To answer the question which impact central bank activity has on financial stability, I first
varied the level of collateral αk that is accepted by the central bank in order to provide
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liquidity to banks. For αk = 1 the central bank will accept all assets of commercial banks as
collateral, while for αk = 0, no assets will be accepted. Thus, αk is used as a parameter to
determine the fraction of assets that are of high enough quality to be accepted as collateral.
Banks will obtain liquidity for the amount of collateral that they can deposit at the central
bank. In Figure (3) it can be seen, that a significant stabilizing effect from the liquidity
provision by the central bank is obtained from αk ∼ 0.45. However, this effect is non-linear
in αk which implies that, on the one hand, even slight changes in the collateral requirements
can have significant stabilizing effects if performed around the critical value. On the other
hand, even large changes can have very little effect, if performed away from the critical
value. The effect on the number of active banks is similar for both, the normal and the crisis
scenario. On the right hand side of Figure (3) the impact of the collateral requirements
on the volume of interbank loans is displayed. It can be seen, that in both scenarios an
abundant provision of central bank liquidity will lead to a crowding-out effect on interbank
liquidity. It can further be seen, that a high amount of interbank liquidity is correlated with
high financial instability. This is precisely the knife-edge property of interbank markets: if
the exposures amongst banks are too large, an initial knock-on effect will be amplified in
the system.

In Figure (4) the impact of different network topologies on financial stability in times of
crisis and normal times is shown. When comparing the results for random networks, it can
be seen that the difference in network topology is not significant during normal times.5 In
times of crisis, however, the different levels of interconnectedness come into play. Figure (4)
also confirms the result of Nier et al. (2007), who show that the relationship between the
level of interconnectedness on interbank markets and financial contagion is non-monotonic.
It can furthermore be seen, that contagion effects tend to be larger in in random networks
than in small-world networks, where in turn contagion effects tend to be larger than in scale-
free networks. This implies that analyses that are conducted with static random networks
can overestimate contagion effects when a dynamic model of systemic risk is used.

For increasing levels of interconnectedness in random networks, it can be seen from Figure
(4) that there exists a “tipping” point, where the networks become endogenously instable.
To better understand this, the interbank loan volume is depicted in Figure (5). As Ladley
(2011) argues, the knife-edge property of interbank markets requires shocks to be small, in
order to exihibt a stabilizing effect. Figure (5) shows an increase in interbank market volume
until a tipping point, where the amount of interbank loans becomes large and contagion ef-
fects dominate. This in turn leads to an increasing number of insolvencies that spread easier
in the system if the level of interconnectedness increases. It can also be seen from Figure
(5) that the volume of interbank markets in normal times is significantly smaller than the
volume in times of distress. This is easily understood in the model setup, as times of distress
imply larger liquidity fluctuations and therefore larger amounts of interbank loans issued be-
tween agents. However, this implies that interbank markets will be more prone to contagion

5And similarly for small-world and scale-free networks.

15



0 250 500 750 1000

00

20

40

60

80

100

120

140

Time t

# 
of

 A
ct

iv
e 

B
an

ks

connLevel=1.0
connLevel=0.5
connLevel=0.45
connLevel=0.4
connLevel=0.2
connLevel=0.0

0 250 500 750 1000

00

20

40

60

80

100

120

140

Time t

# 
of

 A
ct

iv
e 

B
an

ks

beta=0.001
beta=0.005
beta=0.01
beta=0.05
beta=0.1

0 250 500 750 1000

00

20

40

60

80

100

120

140

Time t

# 
of

 A
ct

iv
e 

B
an

ks

connLevel=1.0
connLevel=0.5
connLevel=0.45
connLevel=0.4
connLevel=0.2
connLevel=0.0

0 250 500 750 1000

00

20

40

60

80

100

120

140

Time t

# 
of

 A
ct

iv
e 

B
an

ks

m=1
m=2
m=4
m=10

Figure 4: The effect of different network topologies on financial stability. Left top: crisis scenario and
random topology. Right top: normal scenario and random topology. Connection levels of connLevel=
0.0, 0.2, 0.4, 0.45, 0.5, 1.0 were used. Bottom left: crisis scenario and small-world network with β =
0.001, 0.005, 0.01, 0.05, 0.1. Bottom right: crisis scenario and scale-free network with m = 1, 2, 4, 10.

effects in times of high deposit and asset return volatility. It also implies that interbank mar-
kets are more susceptible to systemic risk when the volume of the interbank market is larger.

To understand the impact of different forms of systemic risk on financial stability, Figure (6)
compares two different types of shocks. In the case of pure interbank contagion, the largest
bank in the system is selected and exogenously sent into default. The impact of this default
on the remaining number of active banks in the system is depicted in Figure (6) at the top.
Again, it can be seen that the impact is larger in times of distress than in normal times.
To analyze the impact such a default has on the liquidity provision in interbank markets,
Figure (6) shows the interbank market volume at the bottom. When a common shock hits
the system, banks with insufficient equity will go into insolvency. While this might only be
a small number of banks, a larger number of banks become more vulnerable to deposit and
asset return fluctuations. As was seen in Figure (5), shocks that exceed a certain threshold
will lead to an increased number of insolvencies in the system. When banks become more
vulnerable, this threshold is reached easier and the whole system remains unstable as long
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Figure 5: The effect of different network topologies on interbank loan volume. Left top: crisis sce-
nario and random topology. Right top: normal scenario and random topology. Connection levels of
connLevel= 0.0, 0.2, 0.4, 0.45, 0.5, 1.0 were used. Bottom left: crisis scenario and small-world network with
β = 0.001, 0.005, 0.01, 0.05, 0.1. Bottom right: crisis scenario and scale-free network with m = 1, 2, 4, 10.

as the volume on the interbank market (and hence the magnitude of possible shocks) will
lead to increased insolvencies. When the crisis hits, the volume of interbank transactions
drops until it has reached a level where the endogenous deposit and asset return fluctuations
will not lead to an increased number of insolvencies. Comparing the case of common shocks
to the case of interbank contagion, it can be seen that, while the impact of a common shock
on the number of active banks is more severe than in the contagion case, the opposite holds
true for interbank market liquidity. The pure contagion case has a substantial impact on
interbank market liquidity, which on the other hand implies a smaller size of shocks due to
endogenous fluctuations.

4. Conclusion and Policy Implications

This paper develops a dynamic model of a banking system with banks optimizing a portfolio
of risky investments and riskless reserves. Banks face stochastic household deposit demand
and stochastic asset returns. In order to exchange liquidity, banks engage in interbank lend-
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Figure 6: The impact of different forms of systemic risk on financial stability and interbank loan volume.
Left: normal scenario. Right: crisis scenario. Top: number of active banks over time. Bottom: interbank
loan volume voer time. Interbank contagion: the largest bank in the system at time t = 400 was sent into
insolvency. Common shock A: all banks suffer a common shock of 10% on all their assets. Common shock
B: all banks suffer a common shock of 20% on all their assets.

ing. In addition to the existing literature, this model incorporates the central bank, whose
actions have substantial impact on interbank markets. The model allows for the analysis of
the dynamic evolution of systemic risk in interbank markets. Both, the time-varying nature
of interbank markets, as well as the impact of different forms of systemic risk have been
taken into account. Different network topologies have been studied and their impact on
financial stability has been analyzed. Therefore, the model presented in this paper provides
a unique starting point for the analysis of systemic risk on interbank markets.

This paper provides further evidence that central bank intervention can indeed alleviate
financial distress and liquidity shortages on interbank markets in the short run. On the
one hand, even small changes in the collateral requirements of central banks can lead to a
significant enhancement of liquidity provision on interbank markets. On the other hand,
there is a large range of required collateral quality, where even a significant change in the
collateral requirements will not lead to a significant enhancement of liquidity provision. The
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simulation results also show that an abundant provision of central bank liquidity can lead
to a crowding-out of interbank liquidity. The desired impact of central bank activity on
liquidity provision will thus be smaller in the long run. This is confirmed by the fact that,
while the central bank has a stabilizing effect on the financial system in the short-run, the
long run equilibrium will always be the equilibrium that would have been reached without
central bank activity.

The model developed in this paper allows for a deeper understanding of the knife-edge prop-
erty of interbank markets. The results indicate that there is an upper limit of interbank
loan volume for different network topologies, where endogenous deposit and asset return
fluctuations will lead to an increased number of bank insolvencies. The limit itself depends
on the topology of the interbank markets and will be larger for higher interconnected bank-
ing systems. This implies that the knife-edge property of interbank markets depends on
the precise market structure and level of interconnectedness. For higher connectivity on
the interbank market, larger amounts of interbank liquidity can be tolerated by the system
without a substantial increase in financial fragility. However, even for complete networks,
where every bank is connected to every other bank, such an upper limit exists. In fact,
for higher interconnected networks, shocks will spread more rapid, which implies a higher
fragility of the system once the tipping point is reached.

Already the correlation of higher interconnectedness and increasing system fragility makes it
clear, that the topology of the interbank network is relevant for the assessment of financial
stability. This paper also shows that the topology of the interbank network impacts the
assessment of the long-run stability of the banking system. This “topology effect” is more
accentuated in times of crisis, while in normal times, the topology has little impact. This
result is of particular relevance for the question which interbank network structure is most
resilient to financial distress. It turns out that networks with large average path length are
more resilient to financial distress and that it is precisely during a crisis where the network
topology matters.

Even though contagion effects are far better studied in the literature, it turns out that com-
mon shocks pose a greater threat to financial stability. This is also due to the knife-edge
property of interbank markets. When a common shock strikes the entire banking system,
banks become more vulnerable to endogenous fluctuations and occasional idiosyncractic in-
solvencies. This leads to a drastic vulnerability of the entire system and a large number of
bank insolvencies. However, contagion affects interbank market liquidity more severely than
common shocks. Again, the impact of the shocks is larger during times of distress, which
holds especially true for the impact of contagious defaults on interbank liquidity provision.

The results presented in this paper have significant implications for central banks and su-
pervisory authorities. First, from the perspective of monitoring systemic risk, it has become
apparent that the topology of the interbank network has to be taken into account. The
recently endorsed Basel III framework sets strong incentives to move from intransparent
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over-the-counter trading of interbank loans to centralized counterparty clearing. One of the
advantages of centralized clearing is that policy makers are now able to determine and mea-
sure the interbank network structure. The interbank network topology, however, is highly
dynamic and varies from day to day. This implies that further analyses of this dynamic
behaviour are necessary in order to understand the full impact of the network topology on
the propagation of shocks. Second, the results in this paper have implications for the opti-
mal reaction of central banks to financial crises, as different forms of systemic risk have a
different impact on the financial system. In the case where systemic risk is mainly mainfest-
ing in the form of contagion, central banks should resort to providing short-term liquidity
to the financial system. Because of to the crowding-out of interbank liquidity by abundant
central bank liquidity, however, this liquidity provision should be short- or medium-term
only. In the case where systemic risk is mainly manifesting in the form of a common shock,
the optimal policy reaction is to re-capitalize the financial system. Only a strengthening
of the banks’ equity will make them more resilient to endogenous fluctuations. This is es-
pecially relevant, as the reduction in interbank lending is smaller in the case of a common
shock and the simulation results indicate a direct relation between high interbank lending
(with respect to the resilience of each individual bank, i.e. the banks’ capital buffer) and
financial fragility. Thus, a better understanding of all forms of systemic risk is required in
order for policy makers to find appropriate crisis reactions. Third, the results in this paper
have implications for the regulation of systemic risk. According to Basel III, banks have to
hold capital for all risky assets they hold. This capital is determined by a required capital
ratio (that has been raised substantially with respect to Basel II) and the risk-weights for
individual asset classes. Historic experience suggested that interbank loans are less risky
than loans to the real economy. Therefore, the risk-weights for interbank and financial as-
sets were substantially smaller than the risk-weights for other assets. The simulation results,
however, indicate that higher amounts of interbank lending lead to larger financial fragility.
In addition to calibrating risk-weights to historic default experience, it is thus necessary to
add a “systemic risk weight” on different asset classes in order to counterveil the default
risk externality that is at the core of contagious defaults. Even more pressing is the need
for regulatory tools to counterveil the correlation externality. One such possible tool would
be the asset value correlation factor in Basel III. This factor is currently implemented as a
static factor, which is slightly higher for large banks. This ignores the correlation externality
that is at the root of common shocks. Supervisory authorities should require more detailed
information about banks’ trading and bank books and determine the correlation of different
asset classes from this data in a macroprudential approach. These “dynamic asset value
correlation” factors can then be disseminated to banks who in turn calculate their individ-
ual asset value correlation factors in accordance with their portfolio, which will effectively
reduce portfolio correlations.

This paper highlight the importance of macroprudential supervision in addition to the exist-
ing microprudential regulation of individual financial institutions. However, more research is
needed to fully understand the dynamics of systemic risk and to develop regulatory measures
that will effectively sustain financial stability.
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