
Distributed ledger technical research
in Central Bank of Brazil

Positioning report

Technical consultants
Aldenio de Vilaca Burgos

Jose Deodoro de Oliveira Filho
Marcus Vinicius Cursino Suares

Rafael Sarres de Almeida

E-mail
blockchain@bcb.gov.br

Research Manager
Aristides Andrade Cavalcante Neto

Chief Information Officer
Marcelo Jose Oliveira Yared

Authorized by Deputy Governor
Luiz Edson Feltrim

Central Bank of Brazil
Brasilia - DF, Brazil

31st August 2017

Views expressed in this work are those of the authors,
and do not necessarily reflect those of the Banco Central do Brasil.

Distributed ledger technical research

in Central Bank of Brazil

Aldenio de Vilaca Burgos

aldenio.burgos@bcb.gov.br

Jose Deodoro de Oliveira Filho

jose.deodoro@bcb.gov.br

Marcus Vinicius Cursino Suares

marcus.suares@bcb.gov.br

Rafael Sarres de Almeida

rafael.almeida@bcb.gov.br

Abstract

Distributed Ledger Technology (DLT) is a novel technology that pow-
ers trusted distributed databases. This paper presents a research of an
IT department team of Central Bank of Brazil on the matter, the expe-
rience in analyzing potential use cases, and the examination of some of
the available platforms to develop working prototypes of a minimal Real
Time Gross Settlement System. This work also describes perceived pri-
vacy issues related to the technology acquired during the implementation
effort, and presents a naive approach to tackle these issues.

1. Introduction

Distributed Ledger Technology (DLT) is a rapidly developing technology that
powers trusted distributed databases, applicable to solve problems in various
scenarios by eliminating the need of third party intermediation. At this point
of history, both private and public institutions around the world acknowledge
its potential and consider it a revolutionary technology. They are, however,
uncertain of how it could be leveraged, even though multi-billion dollar markets
(cryptocurrencies) already present a successful use case of this technology.

The current scenario resembles the introduction of the commercial Internet:
a powerful, possibly game changing technology is introduced and, although in-
cumbents can’t quite grasp how to best apply it, they are fully aware a race
has started. At this point in time, all sorts of companies are trying to figure
out how to evolve and adapt the technology in order to apply it to a variety
of problems. In this path, they are continually finding qualities and shortcom-
ings, and creating new platforms, standards and protocols in order to mold DLT
characteristics to fit application requirements.

Views expressed in this work are those of the authors, and do not necessarily reflect those
of the Banco Central do Brasil

1

This work surveys relevant implementations, reference projects where such
technology has been tested, and describes working experiments to assess possible
responses to privacy issues. This also work reports on lessons drawn from these
experiments with a hope that they will inform future decisions of Central Bank
of Brazil with respect to this technology.

It starts by a brief description of the technology, how it came about and
which problems it may be applicable to; the next sections bring the current
state of research on this topic, by analyzing reports by various public and private
financial institutions around the world and academic papers related to the core
issue discussed throughout this research (privacy in a blockchain environment);
further along, this work gives an account on the Central Bank’s team experience
on finding a suitable use-case and building a proof of concept to validate the
acquired knowledge and DLT’s limits; then it closes with a discussion over the
experience’s results and drawn conclusions.

2. Concept

A blockchain is a distributed database used to maintain a continuously growing
list of verifiable records, a ledger. The term derives from the way data is stored
in a continuous flow of blocks chained together using a cryptographic hash
function. Although the term Blockchain Technology is usually used to describe
any type of shared database that prescinds a trusted third party regardless the
way the data is arranged internally, Distributed Ledger Technology is formally
considered a broader, more suitable term. In this document, terms will be used
interchangeably.

In the original design [1], a blockchain resides in a peer-to-peer network
composed of client and server (or miner) nodes: the former set comprehends any
device interacting with the network to use the services it provides (e.g. financial
transactions, smart contracts, etc); the latter are devices in charge of verifying
and maintaining the integrity of records and the ledger. Client nodes request
server nodes to store transactions, changes in the state of any previous registry
on the ledger. Transactions are signed with a public key scheme, guaranteeing
their authenticity and non-repudiation properties (i.e. that they were proposed
by authorized parties and these parties can’t deny their participation at the
same time). Server nodes then work to gather transactions into blocks and try
to mint them into the ledger by solving a cryptographic puzzle, proving that
resources have been committed to the proposed update. This process is known
as proof of work (PoW). By design, although costly to produce, results of a
PoW are easily verifiable. Once generated, the block and its proof of work are
broadcast to the remaining servers, which verify their validity. Accepted blocks
are appended to the ledger and the server which generated the update receives
a reward for its work. Thus, as the acceptance rules are the same for every
node, the network reaches consensus: all nodes agree on and keep a unique,
authenticated copy of the ledger.

The ingenious combination of asymmetric cryptography, proof of work and

2

consensus mechanisms represent the greatest novelty of this technology: they
allow blockchains to be particularly resistant to double spending, Sybil attacks
and Byzantine faults. In other words, the blockchain technology is able to
support a ledger in which: no user should be spend funds (or assets) beyond the
resources they own; no user is able to impersonate another (unless they are able
to steal their private keys by unrelated means); and no dishonest server node is
able to forge unauthentic transactions (either on their own or by colluding with
other nodes).

The original mechanism was conceived by Satoshi Nakamoto [1] (pseudonym)
as the core technology supporting the Bitcoin network, the first blockchain to
go live (in 2009). The Bitcoin network created a new market on its own, the
cryptocurrency market: it spawned several competing public blockchains, gen-
erally from projects that aim to sort out its technological shortcomings (i.e. alt
coins). Nonetheless, it currently dominates this market by representing close to
50% of its multi-billion dollar capitalization value.

The design has evolved since then: some components may be replaced in
order to enable new implementations of blockchains to add features and achieve
goals outside the original Nakamoto design. More specifically, in recent projects:
blockchains were adapted for working in permissioned networks, where nodes
are subject to governance policies that dictate who may connect to and use
it (as opposed to public networks, such as the Bitcoin network, where anyone
is free to connect and use at any time); the proof of work algorithm is often
replaced (e.g. by a proof of stake [2]) and sometimes discarded, as it is considered
resource intensive and unnecessary for networks of trusted servers (e.g. for
permissioned blockchains); and the consensus mechanism may be replaced for
alternate schemes in order to achieve highest transaction throughput or different
levels of fault tolerance (e.g. Ripple [3]).

Among this plethora of new technologies, some noteworthy projects must be
briefly described: Ethereum, Hyperledger, Quorum and Corda, for these will be
looked into with some detail further along this document.

Ethereum [4], which may be described as a second generation blockchain, is
an open-source project created in 2013. It extends the functionality of previous
designs by adding the concept of smart contracts [5], a feature that allows the
ledger to store and run computer programs. The first public Ethereum backed
network went live in 2015 and supports ether, currently one of the highest valued
cryptocurrency markets [6].

Hyperledger is a set of blockchain technologies projects hosted by The Linux
Foundation since February 2016 [7]. The main vision of this initiative is that
only an open source collaborative software development may bring about block-
chains to commercial adoption, by enforcing community processes to encourage
the adoptions of cross-industry standards over time. It currently counts on the
support of well-known companies from both the IT (such as IBM, Intel and
Cisco) and financial services (e.g. ABN AMRO, J.P.Morgan Chase, SWIFT)
sectors.

During 2016, while participating in the Hyperledger Project, J.P. Morgan
Chase introduced Quorum, an implementation of a permissioned blockchain

3

built on top of the Ethereum platform source code [8]. This project aims to solve
privacy, security and regulatory challenges that currently hinder the adoption
of public blockchains by the financial sector.

The recently launched Corda Distributed Ledger moves in the same direc-
tion. It is a related technology created in 2016 by the R3 consortium, a company
founded in 2015 and that currently gathers over 80 of the world’s biggest finan-
cial institutions [9]. Although inspired by blockchains, designers opted to diverge
from the described design in order to drop some characteristics they deem unfit
for most banking scenarios [10]. Particularly, it leverages no cryptocurrencies
and no globally shared data, while still allowing for regulatory and supervisory
features, consensus mechanisms and smart contracts.

3. Benefits and Applications

The first application of a blockchain was powering decentralized payment sys-
tems, specifically cryptocurrencies. In the days before their inception, payment
systems needed payers and payees to trust either in each other, or in third parties
to intermediate transactions and guarantee that values would be transferred ac-
cordingly (i.e. a trusted authority, a centralizing node). In a distributed ledger
it is possible to avoid centralization and yet create global reliable peer to peer
networks because trust is transferred to technology, notably the robustness of
cryptographic algorithms and the consensus mechanism. Thus, the foremost
benefit of this technology is the reliable decentralization of trusted networks.
Aside from peer to peer (pseudo) anonymous payment networks such as cryp-
tocurrencies, typical examples of this case are cross-border payment systems,
since it is hard for nations to find such trusted third parties to agree upon.

However, financial transactions are far from the only application of this tech-
nology. Cryptography and consensus are applicable to any digital representation
of real world assets: in payment systems, assets are balances of whatever monies
that users might transfer to each other. Digital ledger records may seamlessly
store a great variety of information, such as digital documents that contain
the rules of engagement between actors (i.e. smart contracts); health records
[11]; or identity records for any type of entity (e.g. individuals and organiza-
tions). Furthermore, any information stored under a blockchain may be fully
trusted to have been recorded by a verifiable entity (i.e. one which possesses the
respective private keys) and untainted by anyone else. Thus, another benefit
of this technology is the creation of a permanent, trusted record of assets and
transactions.

Awareness of these features moved the Central Bank of Brazil to task a study
group to evaluate and analyze currently available blockchain platforms in order
to further understand both the technology’s applicability and shortcomings. A
reliable, immutable, trusted ledger might be an ideal tool to tackle solutions
for situations that may profit from full decentralization and strong resilience
to individual failures, making it a candidate fit to a large set of previously
unexplored problems. This study group’s goals comprehended both finding such

4

scenarios and identifying any limitations presented by the current state of the
art of the technology.

4. Previous and concurrent work

This is a summary of works from other public and private financial institutions
that, as the Central Bank of Brazil, have recently investigated this technology
to the best of our knowledge.

4.1. Project Jasper

In 2016, Payments Canada, the Bank of Canada, R3 and Canadian commercial
banks that were members of the R3 consortium, initiated Project Jasper [12],
a proof of concept system to explore a DLT based wholesale payment system
in two phases: using an Ethereum platform in the first; and a Corda platform
in the second phase. Institutions used digital depository receipts (DDRs) is-
sued by the Bank of Canada to exchange and settle interbank payments. This
arrangement eliminated Credit Risk from the system by requiring backing of
DDRs by deposits at the Bank of Canada. However, the study pointed out that
DLT would need additional devices to address liquidity and settlement risks.
The former is mitigated by using liquidity-saving mechanisms (LSM), reducing
funding demands for settling multilateral transactions, while the latter may not
be solved by traditional blockchains: blocks are naturally transient for a few
cycles due to consensus algorithms, thus there is always some probability that
transactions end up in orphaned blocks and never go into the main chain. Both
problems were addressed by centralized features in phase 2 of Project Jasper
by using Corda: a distributed queue mechanism was used to implement a LSM,
whereas finality is inherent by design on this platform (through notary nodes).
Moreover, authors point out that the inherent transparency of DLT is undesired
for a wholesale payment system, and remark that the introduction of privacy
preserving features creates additional points of failure, either by the existence
of a notary (a centralizing node) or by sharding the information set (storing
unrecoverable private data at participating nodes), leading to the question of
whether this constraint could compromise the resilience benefits of DLT.

This study concluded that wholesale payment systems require inherently
centralized features, such as LSM mechanisms, that would compromise the dis-
tribution characteristic of DLT, therefore limiting the benefits that could be
obtained by applying this technology compared to the current centralized sys-
tems. However, it could yield cost saving and efficiency gains by the automation
of settlement and clearing processes if assets and payments are integrated on the
same ledger (i.e. triple entry bookkeeping [13]), especially in the interbanking
market (e.g. over-the-counter markets for stocks, bonds and derivatives).

5

4.2. Project Ubin

At the end of 2016, the Monetary Authority of Singapore (MAS) partnered
with the R3 consortium in order to build a proof of concept (PoC) to conduct
interbank payments facilitated by DLT, called Project Ubin, counting with the
collaboration of several institutions, such as Bank of America Merrill Lynch,
Credit Suisse, J.P. Morgan, among others [14]. In Phase 1, for six weeks, a pri-
vate Ethereum blockchain supported large-value local currency interbank funds
transfers and settlement of script less Singapore Government Securities between
participants. MAS opted for a monetary model that demanded banks to ex-
change cash collateral for Depository Receipts on the distributed ledger at any
time, allowing the system to overlook credit and liquidity risk issues, and con-
centrate the study in technical analysis. Project Ubin is scheduled to go into
further phases, which aim to focus on securities settlement, cross border pay-
ments and the selection of a DLT platform.

4.3. Emerald

Since currency international payments have no central authority by design, the
Royal Bank of Scotland considered DLT a good fit for cross border transactions
and assigned a team to evaluate the blockchain technology by building Emerald,
a Clearing and Settlement Mechanism on top of a modified Ethereum platform
[15]. By modifying the original source code, they were able to build a Distributed
Ledger with increased throughput and decreased latency (block mining cycle)
compared to the public Ethereum blockchain. Performance tests showed Emer-
ald is on a par with the current national and international payment schemes
(100 transactions per second and 10 second confirmation). Notably, authors
point out that some features in the Ethereum blockchain are discardable for the
private blockchain use case (such as internal computation cost, i.e. gas, and the
proof of work algorithm), and consider that replacing these mechanisms would
provide even faster, more deterministic block mining time than those obtained
through their experiment. The team concluded that, although the Ethereum
platform is originally tuned for the public blockchain use case, with modifica-
tions, it is well capable to scale and accommodate payment volumes consistent
with their local domestic payment systems.

5. Technical experimentation, phase 1

As described in section 3, the Central Bank of Brazil put together a study
group in order to evaluate and analyze the blockchain technology and further
understand both its applicability and shortcomings. The work was split in two
phases:

1. The first phase started on September 2016, its main objectives were: to
look for use cases inside Central Bank of Brazil; to elect one of the use

6

cases and a platform for prototyping; and to produce a minimal proof of
concept using it. This phase lasted for sixty days;

2. The second phase started on January 2017: this time, the purpose was to
analyze competing blockchain platforms using the selected use case as a
benchmark. It lasted for forty five days.

This section contains a detailed report of work done and achievements for
the first phase, whereas the section 6 does the same for the second phase.

5.1. Use case selection

In the first phase, the study group searched for candidate DLT use cases inside
the Central Bank of Brazil, revealing four candidates for further investigation:
identity management systems, the Local Currency Payment System (SML), the
Agreement on Reciprocal Payments and Credits (CCR), and the Alternative
System for Transactions Settlement (SALT).

These use cases were explored in order for the team to elect one of them
for the proof of concept. The ideal case for prototyping would contain a clear
core set of requirements that would favor rapid development, in order to allow
for examination of how the technology could be leveraged. Furthermore, it was
also important that the set of actors (i.e. effective network’s participants) were
reasonably within reach of the team, in order to facilitate communications and
discussion over requirements and results between interested parties.

5.1.1. Identity management

The main objectives of identity solutions are to provide an unique view about
users’ digital identities, and to give them the power to choose which information
might be shared with whom. There is a lot of interest by the financial system
in optimization of these systems since know your customer processes and com-
pliance with anti money laundering laws both consume a considerable amount
of resources.

The Brazilian Federation of Banks (FEBRABAN), for instance, is currently
investigating the applicability of DLT in this area, aiming to give customers the
ability to seamlessly share their information with more than one bank under a
controlled fashion. In a recent event [16], the organization presented prototypes
in two distinct platforms.

Furthermore, creating an unique government identity system would allow
citizens easy access to public services, thus facilitating financial inclusion, one
of the core missions assumed by the Central Bank of Brazil. Unfortunately, time
constraints allowed limited research on this topic. However, while it is rather
early to draw solid conclusions, preliminary examinations made clear this area
is worthy of further exploration in the near future.

7

5.1.2. Local Currency Payment System

SML is a payment system that enables foreign trade in local currencies by al-
lowing importers and exporters from Brazil to send and receive payments to and
from their counterparties in Uruguay and Argentina using local currencies, elim-
inating the need to conduct currency exchanges for import/export operations
[17]. Thus, SML reduces costs of foreign trade transactions for both importers
and exporters from those three countries when dealing within that region.

Currently, financial exchange between the local and foreign counterparties
in this system is performed in 3 rounds. Roughly, it is as follows:

1. First round:

(a) Central banks receive transfer orders from importers’ local banks;

(b) Central banks exchange digital files with orders, and agree on a cur-
rency exchange rate.

2. Second round:

(a) Central banks debit reserve account of importers’ local banks;

(b) Central banks net transfer orders and figure out how much is needed
to settle;

(c) Settlement is realized using foreign currency transfers.

3. Final round:

(a) Central banks credit reserve account of exporters’ local banks.

Blockchain technology would be able to streamline this process, creating a
shared real time database with input validation to minimize reconciliation ef-
forts and eliminate information asymmetry, since much time is currently lost
making sure that both parties share and agree upon on the same data. Ripple’s
Interledger protocol [18], for instance, proposes to speed settlement times by
integrating the central banks ledgers through currency exchanges (i.e. connec-
tors). On that matter, a recent Bank of England report [19] presents a successful
trial of the Interledger protocol in processing cross-border payments across sim-
ulated RTGS systems. The institution deems its trial as positive, although it
points out some pending challenges that should be tackled in subsequent proofs
of concept. Particularly, the handling of availability of liquidity in cross-border
payments is to be explored, since Ripple [3] (the tested blockchain technology)
was designed for retail and corporate transactions, an application where such
feature is not essential.

However, the Central Bank of Brazil team opted for not further exploring
applying blockchain to the SML mainly because it is already supported by
running systems. For the proof of concept, ideally, the team sought a candidate
system for which there is no currently attainable solution using conventional
centralized paradigms. In any case, SML remains a very good case for process
optimization using distributed ledger technology and financial innovations.

8

5.1.3. Agreement on Reciprocal Payments and Credits

The Agreement on Reciprocal Payments and Credits was signed in 1982 to
reduce friction on commercial trade between participant countries, cutting down
the need of foreign currency through a multilateral netting mechanism. The use
of this agreement is voluntary and remaining debts are settled every four months
between participants.

The main characteristics of the CCR agreement is the offer of reciprocal
guarantees of convertibility, transferability and repayment, respectively: that
payments will be immediately converted to US dollars; that dollars correspond-
ing to the payments will be remitted; and that debts imputed to the central
banks resulting from transactions carried under the agreement will be irrevoca-
bly accepted. The main benefit for exporters is the guarantee receipt of exports,
eliminating commercial risk, and for importers is the access to financing by ex-
porters abroad, since the latter have reimbursement guarantees offered by the
Payment Agreement.

The CCR mechanism is, in practice, a Payment Compensation System oper-
ated by the participating central banks through periodic compensation. The set-
tlement system is supported by a Center for Operations located on the premises
of the Central Reserve Bank of Peru, under the supervision of the Latin Ameri-
can Integration Association (ALADI). This center processes all payment orders
between participant central banks and provides a single state view.

DLT could be used to provide a distributed processing environment to sup-
port payment processing, ensuring operations even in case of some central bank’s
disruption, and eliminating the single point of failure. Using a distributed net-
work, there would be no need of trust in the center of operations to provide
an unique view. However, it is yet not clear if privacy requirements could be
achieved with the available technology.

5.1.4. Alternative System for Transactions Settlement

A Real-time Gross Settlement (RTGS) is a basic structure of any country’s pay-
ment system. In Brazil, the Central Bank is responsible for hosting a modern
RTGS system: the Brazilian Payment System (SPB). By its own nature, it
is a critical technological structure for the national financial system, through
which all participants reserves are exchanged. In the case of its catastrophic
failure, RTGS members would be unable to send (or receive) funds to (from)
each other, leading to a complete financial halt. This very situation is tackled
by the BIS Principles for financial market infrastructures: “An FMI (Financial
Market Infrastructure) should also consider alternative arrangements (for exam-
ple, manual paper-based procedures) to allow for the processing of time-critical
transactions in extreme circumstances.”[20].

In this context, the Alternative System for Transactions Settlement (SALT)
is a conceptual system for a contingent solution that would be able to imme-
diately replace core functionalities of the main Brazilian RTGS in case of its
full collapse. Although detailed requirements and conditions for its activation

9

are currently being debated within the Central Bank of Brazil and between
Brazilian financial institutions, Distributed Ledger Technology presents great
potential for working as foundation for a highly resilient system due to its dis-
tributed nature, i.e. a solution that may operate independently of any Central
Bank of Brazil infrastructure, nonetheless trustworthy by all parties.

5.1.5. The elected use case

After investigations, SALT was deemed the ideal candidate: its functional re-
quirements are considered rather simple and straight forward; is was possible to
choose a subset of core requirements to build a simple, yet fully working, proto-
type (e.g. throughput capability and liquidity issues were ignored at this stage);
and parties were readily available (i.e. commercial banks that participate in the
full RTGS are easily within reach of the Central Bank). Furthermore, since
there is currently no backup system in place, the experience could be used as
foundation for a future production system.

Going a step further, research was concentrated on deciding if features and
shortcomings of blockchain technology would favor maintaining a minimal real-
time settlement system in place in the case of a catastrophic event taking every
Central Bank(CB) datacenter down (thus, the main RTGS system).

Therefore, the initial design of the backup RTGS would be, in this context: a
permissioned blockchain network where financial institutions and Central Bank
are validating nodes (e.g. miners), using the Internet as intercommunication in-
frastructure due to its resiliency. In this scenario, nodes would share a common
distributed ledger containing the state of every institution’s reserves, and they
would be able to continue making transactions against each other governed ex-
clusively by smart contracts, in full absence of the Central Bank’s supervision.
Thus, using blockchain features, the ledger would be automatically guaranteed
to register only legitimate transactions, i.e. non-repudiable transactions guar-
anteed against double-spending.

As for core requirements for the PoC, the following items were selected:

1. A ledger would be created at the start of contingency;

2. Full money quantity would be issued by a Central Bank controlled node
on ledger inception;

3. Nodes would be operated by participants in a permissioned network;

4. No money could be created after inception;

5. Wallets would be created for each participant and necessary keys dis-
tributed accordingly and securely, preferably (but not mandatorily) with-
out using backchannels. The term wallets, in this context, is used in the
sense of conceptual wallets: whatever existing mechanism from the avail-
able platforms through which nodes are able to hold balance and transfer,
i.e. not exclusively address wallets (e.g. Bitcoin’s);

10

6. At the outset, each wallet would be attributed a balance by the Central
Bank Node;

7. Each participant may or may not host nodes, i.e. participants may use
third parties to submit transactions, if a platform allows so;

8. Participants would send or receive money to each other, restricted only
by their available balance (i.e. wallets’ balances are non-negative);

9. No participant would be allowed to be aware of any other participants’
balances;

10. Participants would know their own balance at all times;

11. Central bank node would be able, at any time, to audit transactions and
balances from any node;

12. After inception and initial distribution, the system should operate with
or without the central bank node, automatically ensuring privacy and
preventing double-spending;

13. Once operations are terminated (contingency is over), balances are trans-
ferred back to the Central Bank RTGS;

During the PoCs, depending on each platforms’ capabilities, some require-
ments may have been relaxed to accommodate the implementations. For in-
stance, if a particular platform required wallets to be always hosted in a node,
item 7 would be ignored.

However, on the outset, the team identified that blockchains’ innate data
transparency infringes the Central Bank privacy requirements between financial
institutions. The simple approach of storing balances in the ledger and approv-
ing signed transactions based on coded business logic (including double-spend
protection) would not suffice, as it reveals sensitive financial data to all partic-
ipants. Neither just encrypting sensitive data is a viable solution: for instance,
without access to all data, smart contracts on the available platforms are not
able to decide whether a transaction is valid. In this case, a possible solution
is to add trusted nodes that would be able to see through that information
and validate transactions, but, then again, leaving decisions to trusted party
would impair the resiliency of the system and undermine the case of using a
distributed technology in the first place. The solution to this dilemma proved
to be a challenge greater than expected.

Moreover, some key assumptions were used to keep requirements within a
feasible set: the existence of a (undetermined at this time) mechanism to bridge
between the main RTGS and this backup design, which is able to provide enough
information from the last RTGS state for executing steps 2, 5 and 6; another
(undetermined as well) mechanism to restart the main RTGS consistently using
transactions extracted from the blockchain after the last step (contingency deac-
tivation); all nodes would be provisioned at the same time (new nodes wouldn’t

11

be allowed to go online during operations); and global liquidity is fixed at the
existing total money stock on the main RTGS when operations begin. These
assumptions make this a stateless design: the alternative ledger is created as-
suming main RTGS last state is readily available for its operation, then infor-
mation is exported to the main RTGS after its restoration and the alternative
ledger is destroyed. In real world settings, it is reasonable to assume the ledger
is to be created only once and continuously updated by bridge mechanisms in
order to be able to be activated (and deactivated) seamlessly at any time (a
stateful design). However, the team assumed both mechanisms are equivalent
for the PoC, since the stateful design may be considered as a particular case
of the stateless design: i.e. the latter may be turned into the former simply
by dropping the last two assumptions (node provisioning and money issuance).
Thus, by assuming bridge mechanisms as given, requirements could be kept
within reasonable complexity and, at the same time, the prototype would have
enough functionality to prove itself useful.

5.2. Prototyping using BlockApps

The team opted for testing exclusively second generation platforms, i.e. smart
contract based blockchains (such as Ethereum) rather than pure financial trans-
action based platforms (for instance, Bitcoin-based). Here, the rationale is that,
although predicting the full extent of its usage might be by itself an impossible
task at this point in time, it is reasonable to assume that a future ledger operated
within a permissioned network of the financial institutions might accommodate
for several applications, since these institutions deal between themselves on dis-
tinct levels (e.g. securities markets). On top of perfectly fulfilling the role of
pure financial transactions, smart contracts provide added flexibility that makes
them suitable for powering most foreseeable applications in a single DLT plat-
form.

Thus, the first prototype was built using BlockApps, an Ethereum-based
blockchain software development platform. The main driver of this decision was
its REST API, which allowed the team to circumvent the complexities of the
Ethereum Web3 library and focus exclusively on coding the use case. However,
like in the public Ethereum blockchain, transaction data in BlockApps is fully
transparent, compromising the desired data privacy requirements.

The first approach to this drawback was a naive solution, adding an off-
chain privacy layer that works as follows: as the system starts, the Central
Bank of Brazil registers each participant’s public key on the blockchain using
regulator-only transactions; on a second phase, the central bank uses these
keys to initialize and encrypt each participant’s starting balance; finally, the
regulator also generates, encrypts and stores a symmetric transaction key for
each participant pair on the blockchain. Using this procedure, each financial
institution is restricted to access only its encrypted sensitive data, and uses its
own private keys to decode its own information.

When a participant needs to send money to another: it reads the suitable
(encrypted) transaction key from the blockchain; decodes the transaction key

12

using its own private key; encrypts the transaction using the decoded key; then
stores the encrypted transaction in the Ethereum blockchain. As the central
bank may retrieve transaction keys at any time, it is able to decode every
transaction, whereas financial institutions are restricted to decipher only those
they were part of (i.e. for which they may retrieve the key from the blockchain
using their own private keys).

However, storing encrypted information on the blockchain causes two un-
intended consequences: first, smart contracts no longer have access to (now
encrypted) transaction information, thus becoming unable to prevent overdraft
transactions. The workaround to this problem relies on a two-phase commit
scheme, which does not completely solve the problem but provides a reasonable
balance between privacy and resiliency. Second, this architecture lacks strong
forward secrecy, meaning that compromised transaction keys would make pos-
sible for unauthorized parties to disclose all transaction history of a participant.
This drawback may be attenuated by changing transaction keys periodically,
however, asymmetric keys remain a weak spot.

Figure 1 shows a how a transaction is processed in this system: transactions
are registered on the blockchain in the unconfirmed state. Unconfirmed trans-
actions are considered transfer proposals, and do not reflect immediately on
participants’ balances. The creation of transactions starts its verification win-
dow : a configurable period of time (e.g, 10 minutes) when the regulator node
may change its state to either confirmed or blocked. After the the verification
window expires, sender institutions may confirm their transactions themselves.
Confirmed transactions are final.

Figure 1: Two Phase Transaction Commit

This design preserves the system against overdrafts when the regulator node
is online by providing off-chain, proper balance checks during the verification
window. On extreme scenarios (i.e. when the central bank is completely offline),
smart contracts are not capable of stopping overdraft transactions by themselves
because, as stated previously, transaction data is always fully encrypted.

13

Although the techniques applied to this prototype do not yield an ideal
solution within the stated requirements, this first experiment proves that DLT
may already be a tool to allow RTGS members to keep registering transactions
while the central node faces outage.

The prototype is available on Central Bank of Brazil Gitlab repository (BCB
Gitlab [21]), under rtgsBlockChain. It contains all functions needed for the
system to work, including a monitoring panel for Central Bank teams. The
solution is composed by three layers:

1. API : BlockApps specific layer, which facilitates the interaction with smart
contracts;

2. Client app: web application that communicates with the BlockApps API,
and contains the off-chain privacy layer;

3. Smart contracts: code to be deployed to BlockApps nodes.

The API layer allows using standard web protocols to interact with Block-
Apps nodes. It contains interfaces for a calling party to deploy smart contracts,
create transactions and access the current state of smart contracts. Users that
interact with the blockchain need to be created beforehand, and their private
keys need to be stored locally. However, the set of interfaces for smart contract
interactions is somewhat limited, the team had to extend the default API and
create custom endpoints in order to extract additional information from smart
contract states.

The web application was built using standard web development technologies.
For the typical quick approach of a PoC, the team opted for implementing the
off-chain privacy layer hosted in the web browser environment, using third party
Javascript libraries for symmetric and asymmetric cryptography processing.
However, this design is far from ideal in production environment, which demands
more sophisticated cryptographic mechanisms, like a Hardware Security Module
(HSM).

Smart contracts were built using Solidity, Ethereum’s most popular lan-
guage. The implemented contract allows only its owner (the central bank) to
register public keys and transaction keys, as well as starting balances. More-
over, when a participant creates a (encrypted) transaction, contracts store the
transaction ID in a mapping, a data structure similar to a hash table, in order
to facilitate queries later on.

The monitor panel is a particularly important piece of the prototype. Using
it, central bank users may visually check the current balance of each participant
by reading all (encrypted) transactions, decrypting them using transaction keys,
and calculating balances. If a financial institution stores a transaction proposal
without enough funds to honor it, the central bank node may block that proposal
until the participant’s liquidity is restored (i.e. the institution receives transfers
from other participants). Alternatively, a participant may be completely sus-
pended to operate on the alternative system by the regulator. Figure 2 presents
the monitor panel highlighting a transaction proposal that cannot be fulfilled
with ”Banco K”’s available funds.

14

Figure 2: SALT Prototype Monitor Panel

5.3. Phase 1 Assessment

Final results of the first phase were positive, as the team was able to successfully:

• Identify several use cases that would benefit from its application;

• Develop a working, albeit not ideal, prototype for a selected use case.

Particularly, building a prototype made it clear that DLT was not mature
enough to fulfill all requirements, especially when it comes to protecting the
privacy of the network’s participants. A naive solution was attempted, by reg-
istering fully encrypted transactions in the blockchain. However, as discussed,
although it is possible to achieve privacy through this method, by blinding con-
tracts to transaction information, the system is no longer able to protect itself
against overdrafts, and is still vulnerable to the forward secrecy problems under
some conditions.

Throughout the experience, the team also learned that technology companies
were trying to figure out how to create business models, and that many working
groups were trying to build proof of concepts at the same time around the world,
making it particularly hard to get adequate levels of support from suppliers.
Furthermore, during interactions with business areas within the Central Bank
itself, the research group also detected that lack of maturity was not the only
barrier to blockchain adoption: when it comes to this subject, there is currently
a lot of bias and misunderstanding among both technical and non-technical
crews. The main consequence of this issue is that, once DLT is considered for
a project, it yields extra friction on communications between involved parties
due to lack of technical discernment.

15

6. Technical experimentation, phase 2

The second phase of the work focused on analyzing additional platforms in the
context of the same use case (SALT). The team chose three platforms to study
in this phase: Hyperledger Fabric, Corda and Quorum. As privacy was the
unsolved problem in the first phase, the main goal was to seek a platform which
allowed the development of a RTGS that agreed with all requirements.

6.1. Hyperledger Fabric

Fabric, led by IBM, is an active project from Linux Foundation’s Hyperledger
initiative. The main purpose of the framework is to provide a modular archi-
tecture, allowing its components to be plug-and-play. Although it is currently
available on version 1.0 (since July 2017), the prototype was built on top of
a previous version (0.6), the latest available at the time phase 2 took place
(January 2017).

Nodes in Fabric 0.6 may be of one of two types: validating nodes, which
are responsible for executing smart contracts and achieving consensus; non-
validating nodes, which just have a copy of the blockchain and delegate the
execution of smart contracts to validating nodes.

To be part of a Fabric 0.6 network, a node needs to be enrolled using certifi-
cates provided by a membership service. After this process, the node registers
users through a membership service. Transaction certificates are issued every
time an user submits a transaction, which implies pseudo-anonymity, since the
relationship between a transaction certificate and an user is known only by the
membership service and the user itself. It is worth noting that de-anonymization
techniques described on appendix A pose a risk to privacy of the participants,
specially in smaller networks scenarios.

Consensus is achieved via Practical Byzantine Fault Tolerance (PBFT) [22]:
a leader is dinamically elected between validating nodes, establishes transaction
order and broadcasts them to the remaining nodes; these nodes execute and
validate transactions themselves, then broadcast results to the remaining nodes;
and once enough nodes acknowledge they agree to the same results, transactions
are committed to the ledger. Although it is possible to disable the consensus
protocol, it is not recommended.

Fabric 0.6 supports smart contracts written in Java or Go. Unlike Ethereum,
which runtime environment (EVM) contains a limited instruction set, Fabric’s
“virtual machine” is a Docker container, with less coding restrictions. This
means that it is possible to write non-deterministic code on Fabric, which on
its turn might be dangerous in the context of a distributed ledger technology.

Each smart contract contains a state as a set of key-value pairs, and trans-
actions change the state of a smart contract. There are three main functions in
a Fabric smart contract: init (executed on deploy), invoke (changes blockchain
state, creates a transaction) and query (operates on the current state of the
blockchain). Transactions are grouped from two perspectives: Fabric’s block-
chain is a sequence of transactions linked by hashed blocks; and the World State

16

is an auxiliary database that stores the last state of every contract.
Data privacy could not also be fully achieved on Fabric 0.6: node adminis-

trators have means to access all information in the blockchain. The REST API
embedded in each node allow queries over all blocks, which are just encoded in
Base64 format (i.e. unencrypted). Besides, it is possible to access the World
State and view all current information of any smart contract. If privacy re-
quirement is not too strict, a certain level may be achieved through chaincode
policies, meaning that chaincode query functions will only return data that is
relevant to the user. However, this kind of policy needs to be implemented
manually by the developer of the smart contract. Further improvement in data
privacy would require a secure computing environment.

6.1.1. Hyperledger Fabric 0.6 Prototype

The SALT prototype developed in Hyperledger Fabric 0.6 is available at the
BCB Github repository [23] under salt-hyperledger. It implements the aforemen-
tioned relaxed privacy level in chaincode, using Go as smart contract language
and Javascript for the remainder of the code.

The system starts with four financial institutions and the central bank: each
institution can see its own balance and transactions; the central bank can see
all the transactions and balances. The basic use cases are: checking balance
and transferring money from a institution to another.

The prototype can run either in a local blockchain environment, or hosted
in a cloud service. The main parts of the prototype are:

1. REST API : Exposes a API which talks to the Hyperledger Fabric Client
(HFC) library;

2. Client : The web application, talks to the REST API;

3. Chaincode: The smart contract that is deployed to a Fabric node;

The REST API encapsulates the communication with the Fabric node, which
are made by the HFC library, including the issuance of transaction certificates.
This decision simplified the development process, making it possible to focus on
the smart contract functions and the web application on top of the API.

Users interact with the client layer, a web application. In the prototype,
each user belongs to a financial institution and acts in its name, and user in-
formation is stored in contract states. It seems a better approach would be
using membership certificates to validate users, however the team could not
find documentation on how to do it at the time.

6.1.2. Fabric 0.6 Assessment

Overall, the final result was satisfactory: the platform architecture was un-
derstood, and the proof of concept was built. The team hopes to be able to
improve the prototype using the 1.0 version of Fabric in a near future, and use
new promising privacy features, like channels and endorsement policies.

17

However, it was found that Fabric 0.6 has the same limitations of Ethereum
about privacy: there is a need of an additional off-chain layer to create private
transactions. The imminence of 1.0 release made it hard to find good documen-
tation about how to work with the 0.6 version, as the community was focused
on the new release.

6.2. Corda

Corda [24] is a blockchain inspired open source permissioned distributed ledger
platform built with focus on financial industry, that was created and is still
being developed mostly by a company named R3 [9]. A Corda network is made
up of nodes running Corda and CorDapps (Corda’s smart contract), one or
more notaries and zero or more oracles, i.e. a third party service that provides
external data onto the blockchain.

In Corda, there is a global ledger of transactions but, unlike other block-
chain based platforms, there is no globally shared blockchain: instead, each
participant node in the network stores a fraction of the distributed ledger. This
fraction corresponds to the set of committed transactions in which the hosting
node has participated. This way, two peers will see the same version of any
on-ledger transactions they share, but peers will not have access to transactions
they are not part of.

A transaction in Corda is a proposal to update the ledger, with input and
output states. If the transaction is valid and committed, it will consume active
states as inputs and it will produce, as output, new active states. Consumed
states are no longer available for new transactions: thus, active states are just
unspent transaction outputs (UTXO). A transaction is valid if it doesn’t contain
double-spends, all of its states’ contracts are accepted, and it is signed by the
required parties.

Corda contracts are functions written in a JVM programming language (e.g.
Java or Kotlin) that have deterministic execution and are tied to states. It
will either accept or reject a transaction based exclusively on its contents. But
contracts have limitations, they can only check transactions for internal validity.
A contract can not check, for example, if a transaction is in accordance with
what was originally agreed with the counterparties. Therefore, peers should
check the contents of a transaction before signing it, even if the transaction is
contractually valid.

To fulfill this requirement, among others, Corda has the concept of flows:
Flows are the part of CorDapps that coordinate communications between nodes
and automate the process of agreeing ledger updates. Flows have steps, subflows
and checkpoints, they work as persistent state machines that may last days or
more. All communications in Corda occurs inside a flow context, and are point-
to-point by default.

The notary is a special entity whose main responsibility is to prevent double-
spends by granting the uniqueness of each transaction that goes in the ledger.
Each notary can run stand alone or in consensus with other notary instances to
accomplish its goals. Almost all transactions in Corda need to be notarized and

18

the notary will only sign a transaction if it is responsible for all the transaction’s
input states. The need of a notary to grant uniqueness of each transaction
assigns specific requirements to the notary itself:

1. Unbreakable: if the notary is offline, all the active states assigned to it
will be blocked for usage, as the node cannot prove the absence of double
spends.

2. Neutral : as the notary sees all transactions it notarizes, it needs to be a
neutral party.

3. Trustful : if the notary is breached by an unauthorized party, all system
trust is compromised.

4. Flawless: if the notary make mistakes in its operation, all system trust is
compromised.

5. Fast : if the notary isn’t fast enough, the system performance is compro-
mised.

6.2.1. Corda Assessment

After some development and testing, the team decided not to go further in con-
structing a fully functional SALT prototype at that time because the code base
was somehow immature: during the lab period, Corda went progressively from
version 0.6 to version 0.9.2, suffering various changes on API and functionali-
ties. Furthermore, the platform still missed some important features related to
reliability and privacy:

1. Disaster recovery : In other platforms (e.g. Fabric or Quorum), if a node
breaks and needs to be replaced for a pristine node instance, the normal
behavior of the network is to provide the new node all the data it needs to
get synchronized and running as soon as possible. In Corda, as mentioned
earlier, there is no public blockchain or private channels, each transaction
occurs in a peer-to-peer manner. Without a disaster recovery feature built
in the platform, the process of retrieving data from the network would be
cumbersome and risky. As resilience is the main purpose of SALT project,
this feature really plays an important role in the system, and some disaster
recovery capabilities are expected in future releases of Corda;

2. Notary customization: The early versions of Corda had only two options of
notary behavior implemented and included in the platform: validating and
non-validating notary. Those available implementations were too simple
to meet SALT’s monitoring and availability requirements, and no other
behavior or customization was possible to the notary node. Later versions
included RAFT and PBFT notaries (which solve availability issues) and
also made it possible to execute a fully customized notary to meet other
business needs.

19

3. Privacy of transaction history : In a project like SALT, assets should
travel freely among the few well-known participants, possibly creating
a big transaction history chain in a short period of time. The free cir-
culation of the historical chain linked to each transaction, necessary for
the transaction validation, is a breach in the privacy control of the bal-
ances and transactions between the nodes. However, Corda’s transaction
tear-off is a privacy technique used in R3’s platform to hide information
from non-validating notaries or oracles that consists on creating a Partial
Merkle Tree with omitted branches, leaving just the branch root hash on
its place. This way, only partial transaction data is exposed to external
actors while proving the entire transaction integrity [25]. Recently, R3
announced a partnership with Intel to add a feature called remote attes-
tation to CORDA platform, based on Intel’s Software Guard Extensions
technology (SGX) [26], this feature seems promising in order to solve the
transaction validation without breaking the privacy of the transactions’
history chain.

6.3. Quorum

Quorum is an Ethereum-based permissioned blockchain platform that extends
the original protocol with privacy capabilities, multiple consensus mechanisms
and peer permissions management [27]. These enhancements drew attention to
implementing SALT prototype using this platform, hoping to solve the transac-
tion privacy and double-spend protection dilemma.

All data stored on the Ethereum blockchain is public and is the result of
the consensus algorithm, so there is only one global state shared between par-
ticipants. Quorum extends this design creating private transactions, a new way
to securely exchange data between nodes. Private transactions are encrypted
and addressed to specific nodes on the network, so there is no global knowledge
of its contents. Nodes that are not part of the transaction only receive hashes
of the encrypted private transactions data that is used to complete the Global
Transaction Trie, which root is stored on each block. Using that block infor-
mation, nodes can verify if they are synchronized with the rest of the network
without accessing third parties’ private transaction content. This approach is
similar to the Corda’s transaction tear-off aforementioned in section 6.2.1.

As in Ethereum, transactions may create smart contracts. When a private
transaction creates a contract, it is stored privately in a local state database.
The private state is not part of the blockchain, not subject to global validation
rules and, consequently, interaction between private and public contracts are
limited. For example, it is not possible for a private contract to change the
state of a public contract, however private contracts can read data stored on
public contracts.

Ethereum’s proof of work (Ethash) is not suitable for a permissioned en-
vironment, where network participants are known ex ante, and subject to a
regulator’s authority. That way, Quorum defines a new consensus algorithm
called QuorumChain, and leaves the consensus mechanism exchangeable.

20

QuorumChain is a time-based majority-voting consensus algorithm that de-
fines three roles to every node: maker, voter and observer. Blocks are created at
a bounded random interval by the block makers and submitted to the network,
where voters analyze the proposed transaction list and compare the resulting
public state root hash to the new block’s. It is important to note that private
transactions are only validated (and voted upon) by the respective parties, while
the others just compare the private transaction hash list [28].

While QuorumChain proposes a clever alternative to Ethash, it is not suit-
able to most payment systems that require a legal settlement finality with the
guarantee that transfers are irrevocable. As observed by Project Jasper’s team,
settlement is probabilistic when using Proof of Work consensus algorithms, be-
cause network participants can always agree on an alternate history of the trans-
actions, and create a fork on a blockchain’s past block. The same problem is
present on QuorumChain [29].

Fortunately, a Raft-based consensus mechanism is available on the Quorum
implementation that claims to eliminate the possibility of blockchain forking.
Unlike QuorumChain, Quorum-Raft nodes can operate on one of two available
roles: leader and follower. There is only one elected leader at a time on the
network, and only the leader can produce new blocks. Newly created blocks are
proposed to the Quorum-Raft network and, once a consensus about its validity
emerges, the new block is irrevocably appended to the blockchain.

Quorum-Raft was not tested on the scope of this work, however it is sup-
posedly adequate for applications that require absolute settlement finality [30].

6.3.1. Quorum Prototype

Programming in Quorum is very similar to Ethereum, they both run the same
virtual machine (Ethereum Virtual Machine - EVM) and are compatible with
the same smart contract language (Solidity), making it a very good option to de-
velopers with Ethereum programming experience. However, when dealing with
the same private contracts on different nodes, program logic may be completely
different because contracts of this kind are expected to be in different states
across the network. The team used variables on the prototype contract code to
guide the program logic through distinct paths on different nodes. For example,
minimal sender balance check can be executed on the regulator’s node, as it
supposedly stores all sensitive information of the network participants. Never-
theless, the contract should skip this validation on recipients nodes, obviously
because the sender’s balance is not stored locally.

The SALT prototype developed in this work is available at BCB Github
repository [23] under quorum-examples. Two smart contracts were developed
on a Quorum test environment to implement a basic blockchain RTGS with
privacy capabilities:

1. bankContract : This contract implements the main logic of the RTGS sys-
tem. One private instance of the contract must be deployed for each
participating institution on the network and it will store private transac-
tion data and balance. It has many verification steps to avoid institution

21

personification, fraud and overdraft transactions. Most of the checks are
made by the contract itself, but the overdraft protection must be made by
an active regulator node;

2. regulatorTransactionList : This contract stores and provides the public
data to the private contracts, mainly transactions hashes and participating
institutions information.

The private contracts store transfers details created by transactions that
must only be sent to the recipient institution’s contract and to the regulator
node using the “privateFor” parameter. As in previous prototypes, transfers
are created in an unconfirmed state and are only final if they are confirmed by
the regulator or by the sender institution following the same two-phase commit
process explained previously.

After publishing the private transaction, the sender institution must publish
the same transfer hash in the public transaction log (regulatorTransactionList
public contract) to ensure that all parts are aware of the transaction. Without
this information posted on the public contract, a participant could create an
overdraft transfer without addressing the regulator node on the private Quo-
rum transaction, making it impossible for the regulator to block the offending
transfer. All private smart contracts enforce this rule before confirming a trans-
action.

6.3.2. Quorum Assessment

The first advantage seen on Quorum is the Ethereum similarity. One of the
objectives of the project is to reuse as much as Ethereum protocol as possible,
making it simpler to maintain the platform aligned with innovations introduced
to Ethereum [27].

Considering that Ethereum is the oldest and largest public smart contract
platforms in production, Quorum benefits from the past and, potentially, future
developments on the platform, as they can, in thesis, be merged into the Quorum
code. Moreover, smart contract development cycle is basically the same of
Ethereum’s, but, as stated before, private smart contracts behave completely
different.

Ethereum base code tested in the wild for more that two years is expected to
be reasonably secure and compliant with permissioned network requirements,
however it is noteworthy that the new code introduced to the Ethereum base
may bring unexpected security vulnerabilities to the network, specially in the
all-new secure messaging code. The security benefits of the similarity extend
even beyond the platform base code. Ethereum smart contracts hold millions
of dollars on cryptocurrency in custody on the public blockchain nowadays and,
unfortunately, virtual heists numbers are growing due to vulnerabilities on the
smart contract Solidity code. The Distributed Autonomous Organization and
Parity’s multisignature wallet are examples of how costly these mistakes can
be [31][32], however these attacks are attracting extensive research on how to
create secure smart contracts with the Solidity language [33][34].

22

Quorum privacy capability removes the need to broadcast ciphered sensi-
tive data to every node, however, consensus on the private state is not explicit.
QuorumChain documentation states that “the private state consensus is im-
plicit through a combination of provably synchronized contract inputs (global
Transaction Hash validation check), a provably deterministic EVM (public state
validation check), and provable chain synchronization (new blocks only added
to the canonical chain)” [28]. Nevertheless, the validation to this assumption
requires off-chain processes.

Moreover, it suggests the implementation of an off-chain private state root
hash comparison. However, in many use cases the state of the same private
contract deployed on different nodes will be different by design. This is clearly
the case of the Quorum prototype developed during this research, as follows:
A’s contract on B’s node only stores transactions between A and B. Logically,
this contract instance is in a different state than A’s contract on A’s node that
stores every transaction of A, so private states root hashes are not comparable.

In summary, the developed Quorum prototype achieved the privacy requi-
site at the expense of the double-spending prevention. The bankContract code
cannot guarantee the minimum available funds to honor the transfer as sender
balances are not present on the recipient nodes. In practical terms, the system
still relies on a trusted regulator node to detect and prevent double-spending
using the two-phase transaction commit on the Quorum prototype.

Improvement on this matter are expected in the near future with the an-
nounced partnership of Zerocoin Electric Coin Company and JPMorgan Chase
to integrate zero-knowledge proof technology on Quorum platform[35]. As ex-
plained in appendix A, this technology can prove that a sender has enough
balance to fulfill a proposed transaction without the attestation of a regulator.

7. Discussion and future work

Pseudo-anonymity is the effective privacy level obtained by most cryptocur-
rency systems in the public blockchain case (e.g. Bitcoin, Ethereum). However,
privacy is a desired feature in permissioned networks such as a national level
RTGS (i.e. SALT). This kind of network would contain much less participants:
in the aforementioned Brazilian case, it would be used by roughly two hundred
transactors, whereas a public network such as bitcoin’s operate over tens of mil-
lion of wallets. In such a restricted set, each participant will inevitably interact
with many peers and be able to acquire a great deal of sensitive data in a short
period of time, hence soon being able to extract the transaction graph for a large
part of the network. Such capability could affect the whole financial system by
providing participants with otherwise private information about their peers and
deals, facilitate spurious market transactions and compromise fair competition.

Privacy is also a desirable feature in the other use cases examined by the
team: in identity management cases (section 5.1.1), subjects would like to be
able to have a substantial level of control of who may be authorized to view or
use their private data; SML and CCR both are, conceptually, payment systems

23

between nations, and it is hard to conceive that participating central banks
would allow each other to be aware of their country’s full transaction history.

Thus, throughout this work, the team acquired the concept that, although
that adopting DLT would bring about several benefits, the technology is not
viable for some use cases unless adequate levels of privacy are achieved. Fur-
thermore, the team concluded that, currently, such levels are not fully supported
on the four explored platforms with true decentralization, i.e., without relying
on a trusted node or party.

The naive first (experimental and implementable) solution was to fully en-
crypt transactions on the blockchain. However, as discussed previously, this
approach presents three major drawbacks: it cripples the ability of the block-
chain to enforce smart contract rules; it undermines the forward secrecy property
(transaction history may be disclosed under certain key compromise conditions);
and it requires off-chain processes to enforce processes that would otherwise be
carried out by smart contracts, which requires additional trusted nodes, weak-
ening the resiliency of the ledger.

The survey in appendix A presents a summary of research on techniques
that could increase the privacy level of DLT: one possible approach to achieve
anonymity would be using mixes to allow participants to “wash” coins for their
transactions. However, as discussed in the appendix, this technique also requires
undesirable trusted third party nodes. Essentially, for this use case, the Central
Bank of Brazil would be a reliable trust party to fulfill this role. However, SALT
was conceived to be contingency for situations for which the Central Bank is
unable to operate, thus it can’t be counted on. For the other payment use cases,
however, it might be considered.

Further along, it will be possible to use ring signatures or zero-knowledge
proof techniques to tackle this issue. Zero-knowledge proof, as proposed in Ze-
rocash, is a promising feature for allowing fully encrypted, yet validated, trans-
actions. However, it brings an undesired consequence: as designed, participants
would be able to hide information even from regulators. This level of privacy
might not be desirable due to making it impossible for central banks to be aware
of participant’s states (e.g. liquidity level) by simply inspecting the ledger, i.e.
without counting on the latter to give up information voluntarily.

Most of the analyzed technologies have some type of privacy feature planned
for next versions: IBM (Fabric’s main contributor) claims that full transaction
privacy may be achieved by using channels between transactors, starting from
version 1.0; Corda provides an adequate level of privacy by keeping separate
ledgers for each node, but it lacks resiliency when it relies on notaries to achieve
uniqueness consensus; and zero-knowledge proof functionality is currently being
added to Quorum. Though no implementation presented adequate balance be-
tween features like privacy and resiliency at this point, it is reasonable to assume
that, by adding recently proposed techniques, this problem may be solved in a
short time frame.

Once enhancements are in place to allow for fully distributed private trans-
action, there might be need of investigating a collateral issue: it seems that
privacy, reliability and performance are intertwined, in the sense that, by priv-

24

ileging one of these features, one should expect to hurt another. For instance,
zero-knowledge proof provides higher privacy levels, but current implementa-
tions hint that it hurts the performance of blockchains by demanding an exces-
sive amount of computation to run its algorithms [36]. Corda’s separate ledgers
are another way to provide privacy, but it yields less reliability since data is not
replicated among all nodes, such as in the classical blockchain model. Mixes and
the naive encryption approach present both problems: by adding off-chain pro-
cesses, i.e. invoking external services to validate the uniqueness of a transaction,
both performance (by latency penalty, due to the additional hop) and reliability
(off-chain nodes are generally centralizing points of failure) are harmed. Thus,
further experiments should investigate the ideal balance between these charac-
teristics, and move on to issues that were purposely left out in this work, such
as mechanisms to deal with liquidity risks.

8. Conclusion

This Central Bank of Brazil study on blockchain technology applied to an in-
terbank payment scheme is very similar to other central banks efforts, but it
carries one important difference: the main goal is not to substitute or provide
a main settlement system, but to create a minimal funds transfer system to the
financial sector in case of a complete main RTGS meltdown. As a last line of
support, developing a complex system with liquidity-saving mechanism or full
support of all messages available in the main system was out of scope, the intent
was simply to create a minimal infrastructure for the financial system to endure
during a severe regulator outage. Another difference is that this study is strictly
technical, so there is no intention of analyzing whether a backup RTGS system
may yield economic consequences and, if so, the extent of such impact.

By nature, the value of this technology is intimately tied to the network
effect. Partnerships with another government agencies and private enterprises
may also be very important: many new possibilities emerge when it comes to
share information between agencies, with large foreseeable benefits to society.
The Distributed Ledger Technology could make possible to create an unique
shared view of a large variety of information fed and replicated across institu-
tions.

However, privacy is still the main challenge: along these experiments, it was
not possible to achieve privacy without giving up consensus. There are encour-
aging solutions in this field, like zero-knowledge proofs and secure computing
enclaves (e.g. Intel SGX). More investigation is needed to verify if these op-
tions will be able to settle this issue, and the evaluation of other innovative
approaches should be in order as well.

References

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

25

[2] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. self-published paper, August, 19, 2012.

[3] Smart oracles: A simple, powerful approach to smart contracts.
https://ripple.com/. [Online; accessed 9-August-2017].

[4] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper, 151, 2014.

[5] Nick Szabo. Formalizing and securing relationships on public networks.
First Monday, 2(9), 1997.

[6] Digital gold ’done right’ with digixdao crypto-trading on openledger.
https://www.forbes.com/sites/rogeraitken/2016/04/23/digital-gold-
done-right-with-digixdao-crypto-trading-on-openledger/#1f701e7c5204.
[Online; accessed 11-August-2017].

[7] Hyperledger.org. https://www.hyperledger.org/. [Online; accessed 11-
August-2017].

[8] Why j.p. morgan chase is building a blockchain on ethereum.
http://fortune.com/2016/10/04/jp-morgan-chase-blockchain-ethereum-
quorum/. [Online; accessed 11-August-2017].

[9] R3 consortium website. https://www.r3.com/about/. [Online; accessed
11-August-2017].

[10] Introducing r3 corda: A distributed ledger designed for financial
services. https://www.r3cev.com/blog/2016/4/4/introducing-r3-corda-a-
distributed-ledger-designed-for-financial-services. [Online; accessed 11-
August-2017].

[11] Deloitte Consulting LLP. Blockchain: Opportunities for
health care. https://www2.deloitte.com/us/en/pages/public-
sector/articles/blockchain-opportunities-for-health-care.html. [Online;
accessed 22-August-2017].

[12] James Chapman, Rodney Garratt, Scott Hendry, Andrew McCormack, and
Wade McMahon. Project jasper: Are distributed wholesale payment sys-
tems feasible yet? Financial System, 2017.

[13] Trevor I Kiviat. Beyond bitcoin: Issues in regulating blockchain tranac-
tions. Duke LJ, 65:569, 2015.

[14] Darshini Dalal, Stanley Yong, and Antony Lewis. Project ubin: Sgd on
distributed ledger. self-published paper, 2016.

[15] Creer David, Richard Crook, Mark Hornsby, Nicolás González Avalis, Mark
Simpson, Nick Weisfeld, Ben Wyeth, and Ivo Zieliński. Proving ethereum
for the clearing use case. self-published paper, 2016.

26

[16] Ciab febraban. http://www.ciab.org.br/publicacoes/edicao/69/ciab-
febraban-apresenta-testes-com-blockchain. [Online; accessed 3-August-
2017].

[17] Central Bank of Brazil. Sml - local currency payment system.
http://www.bcb.gov.br/rex/sml/ingl/faq.asp. [Online; accessed 21-
August-2017].

[18] Stefan Thomas and Evan Schwartz. A protocol for interledger payments.
URL https://interledger. org/interledger. pdf, 2015.

[19] Bank of England. Ripple - exploring the synchronised
settlement of payments using the interledger protocol.
http://www.bankofengland.co.uk/Documents/fintech/ripplepoc.pdf.
[Online; accessed 2-August-2017].

[20] Bank for International Settlements. Principles for financial market infras-
tructures. http://www.bis.org/cpmi/publ/d101a.pdf. [Online; accessed 4-
August-2017].

[21] Central bank of brazil gitlab repository. https://gitlab.com/bacen. [Online;
accessed 1-August-2017].

[22] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance.
In OSDI, volume 99, pages 173–186, 1999.

[23] Central bank of brazil github repository. https://github.com/bacen. [On-
line; accessed 1-August-2017].

[24] Corda. https://www.corda.net/. [Online; accessed 16-August-2017].

[25] Corda transaction tear-offs. https://docs.corda.net/releases/release-
M14.0/key-concepts-oracles.html#transaction-tear-offs. [Online; accessed
10-August-2017].

[26] Corda and sgx: a privacy update. https://www.corda.net/2017/06/corda-
sgx-privacy-update/. [Online; accessed 16-August-2017].

[27] Quorum whitepaper. https://github.com/jpmorganchase/quorum-
docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf. [Online; accessed
1-August-2017].

[28] Quorumchain consensus. https://github.com/jpmorganchase/quorum/
wiki/QuorumChain-Consensus. [Online; accessed 4-August-2017].

[29] Quorum faq. https://github.com/jpmorganchase/quorum/wiki/FAQ. [On-
line; accessed 4-August-2017].

[30] Raft-based consensus for ethereum/quorum.
https://github.com/jpmorganchase/quorum/blob/master/raft/doc.md.
[Online; accessed 4-August-2017].

27

[31] Vitalik Buterin. Critical update re: Dao vulnerability.
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-
vulnerability/. [Online; accessed 4-August-2017].

[32] Security alert - critical bug in parity’s multisig-wallet.
https://blog.parity.io/security-alert-high-2/. [Online; accessed 4-August-
2017].

[33] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha
Gollamudi, Georges Gonthier, Nadim Kobeissi, A Rastogi, T Sibut-Pinote,
N Swamy, and S Zanella-Beguelin. Formal verification of smart contracts.
In Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security-PLAS’16, pages 91–96, 2016.

[34] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of at-
tacks on ethereum smart contracts (sok). In International Conference on
Principles of Security and Trust, pages 164–186. Springer, 2017.

[35] Laura Shin. Jpmorgan chase to integrate zcash
technology to its enterprise blockchain platform.
https://www.forbes.com/sites/laurashin/2017/05/22/jpmorgan-chase-
to-integrate-zcash-technology-to-its-enterprise-blockchain-platform/.
[Online; accessed 4-August-2017].

[36] George Danezis, Cedric Fournet, Markulf Kohlweiss, and Bryan Parno.
Pinocchio coin: building zerocoin from a succinct pairing-based proof sys-
tem. In Proceedings of the First ACM workshop on Language support for
privacy-enhancing technologies, pages 27–30. ACM, 2013.

[37] George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies.
arXiv preprint arXiv:1505.06895, 2015.

[38] David Chaum. Blind signatures for untraceable payments. In Advances in
cryptology, pages 199–203. Springer, 1983.

[39] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash.
In Proceedings on Advances in cryptology, pages 319–327. Springer-Verlag
New York, Inc., 1990.

[40] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Da-
mon McCoy, Geoffrey M Voelker, and Stefan Savage. A fistful of bitcoins:
characterizing payments among men with no names. In Proceedings of
the 2013 conference on Internet measurement conference, pages 127–140.
ACM, 2013.

[41] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. Deanonymi-
sation of clients in bitcoin p2p network. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages
15–29. ACM, 2014.

28

[42] David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[43] Malte Möser. Anonymity of bitcoin transactions. In Münster bitcoin con-
ference, pages 17–18, 2013.

[44] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark,
Joshua A Kroll, and Edward W Felten. Mixcoin: Anonymity for bitcoin
with accountable mixes. In International Conference on Financial Cryp-
tography and Data Security, pages 486–504. Springer, 2014.

[45] Ronald Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. Ad-
vances in Cryptology—ASIACRYPT 2001, pages 552–565, 2001.

[46] David Chaum, Ronald L Rivest, and Alan T Sherman. Advances in cryp-
tology. In Proceedings of CRYPTO, volume 82, pages 279–303. Springer,
1983.

[47] Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In Public
Key Cryptography, volume 4450, pages 181–200. Springer, 2007.

[48] Nicolas van Saberhagen. Cryptonote v 2. 0, 2013.

[49] Shen Noether. Ring signature confidential transactions for monero. IACR
Cryptology ePrint Archive, 2015:1098, 2015.

[50] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zero-
coin: Anonymous distributed e-cash from bitcoin. In Security and Privacy
(SP), 2013 IEEE Symposium on, pages 397–411. IEEE, 2013.

[51] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
Advances in Cryptology—EUROCRYPT 2001, pages 93–118, 2001.

[52] Christina Garman, Matthew Green, and Ian Miers. Accountable privacy
for decentralized anonymous payments. In International Conference on
Financial Cryptography and Data Security, pages 81–98. Springer, 2016.

[53] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In Security and Privacy (SP), 2016 IEEE Sym-
posium on, pages 839–858. IEEE, 2016.

Appendix A - Privacy in a DLT environment

Previous monetary authorities efforts refer to a common issue: privacy. Project
Jasper’s research paper clearly expresses this requirement as fundamental for a
wholesale payment system to protect participants sensitive information. Like-
wise, Bank of Canada’s research team concludes that most DLT platforms suffer

29

from excess data transparency [12]. Project Ubin’s document reinforces this be-
lief, stating that DLTs offer the potential to improve domestic and cross-border
transactions only if it can bypass serious technical shortcomings, like full trans-
parency. One of the solutions proposed by Ubin’s researchers is to secure data
in blocks with encryption, a technique explored by the Central Bank of Brazil
(detailed further in this document). Furthermore, MAS team was the only
authority that publicized exploring Quorum platform privacy capabilities, al-
though its latest publication does not offer any detailed explanation of whether
they were able to avoid double-spend attacks, and how so. They are currently
conducting phase 2 of their research, and their conclusions on the matter are
expected to be public in the near future [14].

Since Bank of Scotland’s Emerald aims particularly on performance testing
and DLT evaluation to discover its limits, there is no research on data confiden-
tiality on this project [15]. Danezis and Meiklejohn’s research on RSCoin [37]
follows the same rationale, focusing in providing a cryptocurrency framework in
which monetary policy is still controlled by a central bank, not by a consensus
algorithm. Thus, both leave privacy for a future work.

Unlike other monetary authorities, the Central Bank of Brazil’s team fo-
cused specifically on the antagonism between blockchain’s transparency and the
desired confidentiality during the latter part of the experiments, leading to a
in-depth research about available data obfuscation technologies, which follows.

One of the first efforts in digital money was developed by David Chaum
using a technique called blind signatures in the early 80’s. It was a major break-
through that allowed the generation of digital currency “notes” by the customer,
blindly signed by the bank while debiting the customer account [38]. However,
the system relies on a central party to detect and prevent double spending.
Several enhancements where developed on top of this clever cryptographic sys-
tem, including a probabilistic double-spending detection and identification of
the offending party[39].

As described in its seminal work [1], Bitcoin’s original design include source
and destination addresses in every transaction, in clear form. It relies, therefore,
on the fact that blockchain addresses carry no information about its owners. At
this moment, most blockchains follow this design, thus making them pseudony-
mous networks: once an observer is able to identify an user’s address, it may
trace his entire transaction history. In [40], for instance, authors were able to
analyze the Bitcoin transaction history, use heuristics to uncover evidences to
cluster addresses by ownership, identifying balances held by some major insti-
tutions. In [41], authors go further along and present a series of technical steps
that allow attackers to determine the network address of a node in the Bitcoin
P2P network, effectively deanonymizing bitcoin addresses of transactors.

The first solution to this problem are Mixes. They were first proposed by
Chaum [42], in order to assure anonymous communication between two parties
by encrypting a number of input messages and sending the decrypted output
to receivers, effectively decoupling input and output addresses. Cryptocurrency
mixes work by the same principle: users achieve anonymity by sending a value
to a shared wallet, and receive it back in fresh addresses (possibly decreased by

30

a service fee) [43].
In Mixcoin [44], a third party is used to anonymize cryptocurrency by re-

ceiving coins from several parties and transferring them to fresh, unidentifiable
addresses, conceivably by chaining mixes. In this protocol, mixes sign receipts
of the coins they receive, so that clients may keep them honest, and charge
randomized fees from clients in order to keep output untraceable. However,
although the protocol guarantees anonymized output, attackers may still link
addresses by analyzing mixing timestamps and spending behavior.

By delaying the payout until a substantial number of inputs have been sent
to the shared walled, mixes may yield an adequate level of anonymity for users.
Nevertheless, by observing inputs and outputs in the public transaction record of
a blockchain, attackers may still infer the correlation between two addresses and,
in some cases, successfully identify their ownership. Moreover, this technique
requires putting trust on mix service providers, since they would be able to
retain users’ balances if behaving dishonestly, and they need to keep (at least
temporarily) records on both inputs and outputs to do their work, therefore
being susceptible to leaks that would compromise anonymity. Authors in [43]
analyzed the obtained anonymity degree of three popular Bitcoin mix services
in 2013, and found out that only one of them worked at adequate levels.

Ring signatures were first proposed by Rivest et al [45]. In this authentica-
tion scheme, individuals in a group may generate digital signatures which can
prove that a message was originated by someone in that group, but can’t be
traced to a specific participant. Although they resemble group signatures as
proposed by Chaum [46], they do not rely on any central node, thus guarantee-
ing full anonymity of the signature’s author. Traceable ring signatures are an
extension by Fijisaki and Suzuki [47] that detect if the same participant uses
the signature twice for the same object. Using this technique, van Saberhagen
proposes modifications in the Bitcoin blockchain in order to make transactions
unlinkable [48]: transactions would be sent to one-time public keys, generated
using the recipient’s public address. Using his own information and data in the
transaction body, the recipient is able to recover a one-time private key that
unlocks the transactions; he selects a random subset of other users and, using
their public keys and the recovered private key to generate a ring signature,
is able to sign and spend the incoming transaction. On this scheme, attack-
ers can’t recover the signer’s identity from the signature because they don’t
have the private information to calculate her public key, and double spending
is prevented, since the (traceable) ring signatures may be used only once for
each unspent transaction. However, by design, signing groups are restricted to
transactions of the same amount, thus transactions of less common values may
possibly be linked to a small group of users. Monero [49] extends this scheme to
overcome this drawback, and adds features for allowing hidden amounts, origins,
and destinations for transactions.

Miers et al [50] propose a distributed e-cash system that add an anonymiza-
tion feature to a blockchain without the need of a trusted third party by using
zero-knowledge cryptographic proofs, Zerocoin. In this scheme, users mint new
coins by transferring their own coins to a public escrow, and receive a private

31

secret that allow them to produce a zero-knowledge proof of her deposit (i.e. a
certificate of deposit). Using this proof, users may spend values equivalent to
their deposit from any of the coins in the escrow, which are effectively unlinked
from their own addresses, thereby obfuscating their origin. Hence, Zerocoin
may be defined as a decentralized mix technology. By modifying the bitcoin
source code, authors proved that the scheme is feasible, but would increase
substantially the network’s computational cost at its current state. In [36], this
performance issue in the protocol was later mitigated by replacing cryptographic
algorithms. Moreover, authors note the protocol could be further modified in
order to provide anonymity while allowing user accountability by using, for
instance, anonymous credentials [51].

Zerocash goes a step further, providing a fully anonymous decentralized pay-
ment scheme with strong guarantees and enhanced performance. It uses zero-
knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) to
create a layer of shielded transactions on top of existing blockchain technologies,
by allowing users to mint new coins (in a similar fashion to Zerocoin) deposited
in shielded addresses. Users may then transfer these coins to other shielded
addresses (and, alternatively, to public addresses) of its base blockchain. Al-
though general data (such as timestamps) may be seen in the public blockchain
records, third parties may not extract any information about shielded trans-
action (neither origin and destination addresses, or value), with the obvious
exception of destination information on transfers to public addresses. Aiming
regulatory purposes, [52] proposes a set of extensions to guarantee compliance
and allow selective user and tainted coin tracing.

All the aforementioned zero-knowledge schemes, however, may be applied
exclusively for purely monetary transactions, they don’t allow the programma-
bility in a blockchain (neither scripts, such as Bitcoin’s, nor smart contracts).
Hawk [53] proposes a decentralized smart contract system that keeps transac-
tional data private from the public blockchain records: users commit newly
minted private coins and commit them to a contract by presenting a zero-
knowledge proof; then they send their private inputs to a minimally trusted
party (i.e. a manager), who performs off-chain computations to validate these
inputs, determine payout distribution and generate a zero-knowledge proof of
the contract’s outcome; after attesting the outcome validity, the blockchain gen-
erates output transactions as specified in the contract, as well as redistributes
any unused collateral and fees. Although it has access to private inputs, a dis-
honest manager can’t affect outcome and redistribution of a running contract,
even when in collusion with a subset of participants, and its misbehavior may be
automatically detected and penalized accordingly by the system. Authors de-
scribe practical applications of this system in scenarios like second-price auction,
crowdfunding and financial swap instruments.

32

	Introduction
	Concept
	Benefits and Applications
	Previous and concurrent work
	Project Jasper
	Project Ubin
	Emerald

	Technical experimentation, phase 1
	Use case selection
	Identity management
	Local Currency Payment System
	Agreement on Reciprocal Payments and Credits
	Alternative System for Transactions Settlement
	The elected use case

	Prototyping using BlockApps
	Phase 1 Assessment

	Technical experimentation, phase 2
	Hyperledger Fabric
	Hyperledger Fabric 0.6 Prototype
	Fabric 0.6 Assessment

	Corda
	Corda Assessment

	Quorum
	Quorum Prototype
	Quorum Assessment

	Discussion and future work
	Conclusion

