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Motivation

For Central Banks it is important to count with accurate predictions
of future inflation in order to determine the monetary policy stance
and make appropriate decisions.
Alternatives:

1 Select the ’best’ model in terms of fit or forecasting? structural or
econometrics models? or select a suite of forecasting models?.

2 Chose among a large set of potential predictors the ones that better
help to explain the dynamics of inflation and predict it in the future?

Need to summarize the available information into a single output that
capture all the relevant information from each individual forecast:
Forecast combination

Combined forecast produces smaller forecast error than any individual
forecast, (Bates and Granger [1969], Newbold and Granger [1974],)

The easy way: equal weighted average, but might be biased and
affected by extreme values.

others alternatives of forecast combination
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Description of the methodology

BMA is

A procedure of variable and model selection

Based on uncertainty about the true data generating process

Based on the Bayes theorem
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Description of the methodology. Continue...

Procedure
From a set of M models, M1, . . . ,MM .

with prior belief about the probability of each model being the true one,
P(Mi ) for i = 1, . . . ,M,

Given the observed data Y

Using Bayes theorem, the posterior probability of each model being the true
one is given by:

P(Mi/Y) =
m(Y/Mi )P(Mi )

M∑
i=1

m(Y/Mi )P(Mi )

(1)

where m(Y/Mi ) is the marginal likelihood of model i defined as

m(Y/Mi ) =

∫
L(Y/Θi ,Mi )P(Θi/Mi )dΘi (2)

where L is the likelihood and P(Θi/Mi ) is the posterior density of the
parameter vector of model i .
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Description of the methodology. Continue...

For a quantity of interest ∆ its posterior distribution is the weighted
average of the posterior distributions under each of the available
models

P(∆/Y) =
M∑
i=1

P(∆/Y,Mi )P(Mi/Y) (3)

For a function g(∆) its posterior distribution is give by

E (g(∆)/Y) =
M∑
i=1

E (g(∆)/Y,Mi )P(Mi/Y) (4)

For the forecast Ỹt+h = E (Yt+h/Yt), the optimal forecast
combination is the weighted average of the forecasts generated by
each model.

E (Yt+h/Yt) =
M∑
i=1

E (Yt+h/Yt ,Mi )P(Mi/Y) (5)
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Description of the methodology. Continue...

When considering the case of variable selection, the posterior
probability that variable j is included in the true model is given by

p(Xj/Y) =
M∑
i=1

I (Xj ∈ Mi )P(Mi/Y) (6)

where I (Xj ∈ Mi ) is an indicator variable, taking value of one when

variable Xj is in model Mi and zero otherwise.
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Priors
The models

Linear Regression models Y = Zγ + ε
where Y = {y1, · · · , yT}, γ = (α, β′)′, Z = (1,X ) contains explanatory
variables and ε ∼ N(0, σ2

ε I )
priors for the parameters

for the variance the Jeffrey′s non-informative prior

p(σ2
ε ) ∝

1

σ2
ε

(7)

The prior distribution for the vector parameter γ/σ2
ε is the g-prior

distribution, (Zellner,1986)

p(γ/σ2
ε ,M) ∼ Nk+1(0, cσ

2
ε (Z

′Z )−1) (8)

with

c =

{
K 2 if T ≤ K 2

T if T > K 2 (9)

as suggested by Fernandez et al, 2001.
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Priors

priors for the models

P(Mi ) ∝ δki (1− δ)K−ki (10)

K : maximum number of variables allowed in a model
ki : number of variables included in model i
δ : is set such that the expected model size is equal to some prior.
In particular, when δ = 0,5 the prior model probability is the same for
each model.
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Marginal likelihood

These set of priors lead to the posterior on the parameters

p(γ/Y) ∼ tki+1(γ1,S1,M1, υ1) (11)

where γ1 = c
c+1 γ̂ and γ̂ is the OLS estimate, υ1 = T − 1

S1 =
c

c + 1
(Y − Z γ̂)′(Y − Z γ̂) +

1

c + 1
Y ′Y (12)

M1 =
c + 1

c
Z ′Z (13)

This leads to the marginal likelihood, which is also a multivariate
t-distribution

m(Y/M) ∝ (c + 1)−(k+1)/2S
(−T/2)
1 (14)
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Predictive likelihood

Avoid in−sample overfitting problem

Based on the predictive ability of the model

The full sample (y1, · · · , yT ) is split into two parts:

Y ∗ with T1 observations: used to obtain the posterior distribution on
the parameters

Ỹ with T2 observations: used to evaluate the model performance.

The posterior predictive likelihood P(Ỹ /Y ∗,Mi ) is given by

P(Ỹ /Y ∗,Mi ) =

∫
L(Ỹ /Θi ,Y

∗,Mi )P(Θi/Y
∗,Mi )dΘi (15)
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Ỹ with T2 observations: used to evaluate the model performance.

The posterior predictive likelihood P(Ỹ /Y ∗,Mi ) is given by
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P(Ỹ /Y ∗,Mi ) =

∫
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Predictive likelihood ...

Under the priors above, the predictive density of Ỹ = (yT1+1, · · · , yT ) is

P(Ỹ /Z̃ ,Z ∗,Y ∗, γ∗, σ2
ε ) ∼ NT2(Z̃γ

∗, σ2
ε IT2) (16)

Z̃ : out-sample matrix of explanatory variables

γ∗ : parameter vector estimated with the training sample Y ∗.

The predictive posterior density of Ỹ is a multivariate t-student
distribution.

Ỹ /Z̃ ,Z ∗,Y ∗ ∼ tT2(Z̃γ1,S
∗, (IT2 + Z̃ (M∗)−1Z̃ ′)−1,T1) (17)

with density function

P(Ỹ /Z̃ , Z∗, Y∗) ∝
S∗T1/2

∣∣M∗∣∣1/2∣∣∣M∗ + Z̃ ′Z̃
∣∣∣1/2

× [S∗ + (Ỹ − Z̃γ1)′(IT2
+ Z̃(M∗)−1Z̃)−1(Ỹ − Z̃γ1)]−T/2 (18)

where S∗, γ1 and M∗ are defined as in the case of the marginal likelihood

but calculated over the sample Y ∗.
Eliana González (Banco de la República) BMA May, 2010 18 / 54
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distribution.

Ỹ /Z̃ ,Z ∗,Y ∗ ∼ tT2(Z̃γ1,S
∗, (IT2 + Z̃ (M∗)−1Z̃ ′)−1,T1) (17)

with density function

P(Ỹ /Z̃ , Z∗, Y∗) ∝
S∗T1/2

∣∣M∗∣∣1/2∣∣∣M∗ + Z̃ ′Z̃
∣∣∣1/2

× [S∗ + (Ỹ − Z̃γ1)′(IT2
+ Z̃(M∗)−1Z̃)−1(Ỹ − Z̃γ1)]−T/2 (18)

where S∗, γ1 and M∗ are defined as in the case of the marginal likelihood

but calculated over the sample Y ∗.
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Posterior probabilities...

For each model

Using marginal likelihood

P(Mi/Y) =
m(Y/Mi )P(Mi )

M∑
m=1

m(Y/Mi )P(Mi )

(19)

Using predictive likelihood

P(Mi/Ỹ ,Y
∗) =

P(Ỹ /Y ∗,Mi )P(Mi )
M∑

m=1
P(Ỹ /Y ∗,Mi )P(Mi )

(20)
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Model space

The idea is to find a set of M ”good”models from a large set of K
potential predictors. The model space contains 2K possible models.

Restrict the model space considering models containing up to k

covariates. The model space contains (
k∑

j=0

(K
j

)
) possible models. But

still too many models to evaluate.

Jacobson and Karlsson, (2002), suggested to use MCMC algorithms
to visit models with non-negligible posterior probabilities.

Reversible jump MCMC algoritm, (Green,1995).
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RJMCMC algorithm

Procedure

From an initial state of the chain (θM,M)

Propose a jump from model M to model M∗ with probability
j(M∗/M)

Generate a vector u from a proposal density q(u/M,M∗)

Set (θM∗ , u∗) = gM,M∗(θM, u), where g is a specified invertible
function and u, u∗ satisfy dim(u) + dim(θM) = dim(u∗) + dim(θM∗)

Accept the move with probability

α = ḿın

{
1,

L(Y/ΘM∗ , M∗)P(ΘM∗/M∗)P(M∗)j(M/M∗)q(u∗/ΘM∗ , M∗, M)

L(Y/ΘM, M)P(ΘM/M)P(M)j(M∗/M)q(u/ΘM, M, M∗)
×

∣∣∣∣∣ ∂gM,M∗ (θM, u)

∂ (θM, u)

∣∣∣∣∣
}

(21)

and set M = M∗ if the move is accepted.
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RJMCMC algorithm ...

Procedure

Following the works of Jacobson and Karlsson,(2002) and Eklund and
Karlsson, (2005), the algorithm simplifies

condidering local moves only:
1 add or drop jump. j(M/M∗) = j(M∗/M) = 1

K , with K the number of
available variables.

2 swap jump. j(M/M∗) = j(M∗/M) = 1
k(K−k) , with k the number of

variables in the model.

If all parameters of the proposed model are generated from a proposal
distribution, then

(θM∗ , u∗) = (u, θM) with dim(θM) = dim(u∗) and dim(θM∗) = dim(u)
the Jacobian

∂gM,M∗ (θM, u)

∂ (θM, u)
= 1 (22)
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RJMCMC algorithm ...

Procedure ...

if considering the posterior distribution of θM , P(θM/Y,M) as the
proposal distribution for the parameters space, then the acceptance
probability of the move from M to M∗ simplifies further to

α = ḿın

{
1,

L(Y/Θi ,M
∗)P(Θi/M

∗)P(M∗)

L(Y/Θi ,M)P(Θi/M)P(M)

}
(23)

or

α = ḿın

{
1,

m(Y/M∗)P(M∗)

m(Y/M)P(M)

}
(24)
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Empirical Application
Data

The variable of interest is inflation measured as the twelve-month
growth rate of total CPI.

Dataset consists on 73 macroeconomic variables seasonally adjusted
and transformed as annual growths or twelve-month differences.

1 Economic activity variables: employment, wages, imports, exports, production,
expectations about production ... (26 series)

2 Prices: total CPI and PPI and components, expectations about inflation (23 series)
3 Monetary, credit and exchange rate variables: monetary aggregates, interest rates,

nominal and real exchange rates, terms of trade ...(24 series)

Full Sample: from Nov−1999 to Dec−2009.

For marginal likelihood: Y =
{
yNov/1999, · · · , yDec/2007

}
For predictive likelihood:

small training sample Y ∗ =
{
yNov/1999, · · · , yDec/2004

}
,

hold-out sample Ỹ =
{
yJan/2005, · · · , yDec/2007

}
.

Initial model space: 273 possible models
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Eliana González (Banco de la República) BMA May, 2010 26 / 54



university-logo

Empirical Application
Data

The variable of interest is inflation measured as the twelve-month
growth rate of total CPI.

Dataset consists on 73 macroeconomic variables seasonally adjusted
and transformed as annual growths or twelve-month differences.

1 Economic activity variables: employment, wages, imports, exports, production,
expectations about production ... (26 series)

2 Prices: total CPI and PPI and components, expectations about inflation (23 series)
3 Monetary, credit and exchange rate variables: monetary aggregates, interest rates,

nominal and real exchange rates, terms of trade ...(24 series)

Full Sample: from Nov−1999 to Dec−2009.

For marginal likelihood: Y =
{
yNov/1999, · · · , yDec/2007

}
For predictive likelihood:

small training sample Y ∗ =
{
yNov/1999, · · · , yDec/2004

}
,

hold-out sample Ỹ =
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Empirical Application...
Implementation of BMA

First stage: Variable selection

1 Models of size up to 5 variables are considered. Model space:
5∑

j=0

(
73
j

)
≈

16 million models.
2 δ = 0,065

Yt+h = α+
5∑

j=0

Zj,tγj + εt+h (25)

3 initial state of the chain randomly chosen (model size and explanatory
variables)

4 7 million draws (the first 2 million left out)
5 consider the 20 variables with higher posterior inclusion probabilities
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Empirical Application ...
Implementation of BMA

Second stage: Model selection
1 Include 2 lags of each pre-selected variable to the dataset (60 potential

predictors)

2 Models of size up to 8 variables are considered. Model space:
8∑

j=0

(
60
j

)
≈

3000 million models.
3 δ = 0,13

Yt+h = γ0 +
8∑

j=0

Zj,t−iγj + υt+h, i = 0, 1, 2 (26)

4 initial state of the chain randomly chosen (model size and explanatory
variables)

5 11 million draws (the first 1 million left out)
6 consider the 20 models with higher posterior probabilities
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Empirical Application
Forecast evaluation

Recursive forecasts for the period Jan−2008 to Dec−2009.

Forecast horizon : from one to twelve months ahead

weights of individual models change for each forecasting period

Evaluation criterion : RMSE

Evaluation and comparison of individual forecasts, BMA−pl,
BMA−ml, ITMA, simple average and dynamic factor model.

The benchmark forecast for comparison is the random walk forecast.
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Empirical Application
Forecast evaluation

For ITMA methodology, the models used in the combination where
chosen as:

1 the same selected models for BMA−pl
2 the 20 best models according to the out-sample AIC criteria.

For Dynamic factors model the number of factors and the lags are
chosen by BIC criterion.

A maximum of 6 factors is considered.
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Forecast evaluation
Bootstrapping

For most horizons the forecasting errors are autocorrelated,
An AR model was estimated for the forecasting errors series.

et+h/t = ϕ0 + ϕ1et+h−1/t + ϑt+h (27)

Boostrapping samples were drawn over the residuals of that model
ϑt+h.
Using the residual sample and the parameter estimates, the
forecasting error sample series was constructed,
ei
t+h/t = ϕ̂0 + ϕ̂1et+h−1/t + ϑi

t+h, i = 1, · · · , 500.
The sample size equals the number of out-sample forecast available
for each horizon.

Criterion:

For each sample, calculate the RMSE relative to the RMSE of the
random walk forecast.
Calculate proportion of samples for which a reduction of at least 5 %
in the relative RMSE is observed.
If at least 90% of the samples present reduction in the relative RMSE
then the combined forecast significantly reduces the forecasting error
relative to the random walk forecast.
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Information Theoretical Model Averaging

Based on the AIC information criterion

AIC = 2 k
T − 2 l

T ∝ 2 k
T + log

(
σ2

ε

T

)
where l is the log likelihood, k is the number of parameters in the

model and σ2
ε = 1

T

T∑
t=1

ε2t is the estimate of the variance of the

residuals.

The difference between the AIC criteria of a pair of models is an
unbiased estimator of the difference of the KL distance for the two
models. The KL distance, (Kullback and Leibler,1951), is defined as

I(f,g) =

∫
f (x) log

(
f (x)

g(x/θ̂)

)
dx (28)

where f (x) is the unknown data generating process, g(x/θ̂) is the
given model and θ̂ is the estimate of the parameters.
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Information Theoretical Averaging. Continue...

There are M forecasting models, ranking according to the KL
distance.

exp(−1
2ψi ) with ψi = AICi − ḿın AICj , can be interpreted as the

weight of model i to be the KL best model given that there is a
certain model in set of forecasting models (M) which is the KL best
model for the available data.

The final optimal weights for model i in the set (M) is given by

ωi =
exp(−1

2ψi )
M∑

j=1
exp(−1

2ψj)

(29)

such that
M∑
i=1

ωi = 1
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Information Theoretical Averaging. Continue...

Kapetanios, et al, (2007) suggested an extension to this approach, by
using the sum of square out-sample forecasting errors instead of the
in-sample sum of square residuals, to construct the AIC criterion.

The idea is to replace σ̂2
ε = 1

T1

T1∑
t=1

ε2t by

σ̃2
ε = 1

T2

T∑
t=T1+1

(Yt − Ŷ
i
t/t−h)

2,

where T = T1 + T2 is the full sample size, T1 is the in-sample size,

T2 is the out-sample size and Ŷ
i
t/t−h is the i forecast for period t

with information up to (t − h), i = 1, · · · ,M.

the weights ω’s change for each forecast horizon, h.

the forecast combination is given by

ŶT+h = ω̂1,hŶ
1
T+h/T + · · ·+ ω̂K ,hŶ

M
T+h/T (30)
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Information Theoretical Averaging. Continue...

Kapetanios, et al, (2007) suggested an extension to this approach, by
using the sum of square out-sample forecasting errors instead of the
in-sample sum of square residuals, to construct the AIC criterion.
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Simple Averaging

Equal weights for each individual forecast

ŶT+h =
1

M

M∑
i=1

Ŷ
i
T+h/T (31)
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Dynamic Factors model

methodology of forecasting with many predictors
From a set of N variables, extract K common factors using principal
components (Stock and Watson, 2002)
The factors are linear combinations of the variables (eigenvectors
associated to the largest eingenvalues of the VAR-COV matrix)
The forecasting model is of the form:

Yt+h = γ0 +
K∑

k=1

fkt−j/T1
γk + ηt+h (32)

The factors may enter in the model with time t and/or with some
lag(s) j and are estimated with information up to t.
A forecasting model is estimated for each horizon h.
The forecast is given by

E (YT+h/T ) = γ̂0 +
K∑

k=1

fkT−j/T γ̂k (33)
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h=1 h=3 h=6 h=9 h=12
CPI 0.999 GASAL 0.960 GASAL 0.972 TCNMPROM 0.463 GAOTGA 0.998
RESNETAS 0.334 GAOTGA 0.546 IPI 0.694 GASAL 0.302 AEA 0.992
TERMINTE 0.149 ISNIMAOB 0.441 GAVES 0.316 CDT90DBA 0.247 NCREGUL 0.738
MBISI 0.146 IPI 0.438 GAVIV 0.258 MBISI 0.197 TERMINTE 0.305
NCNOTRAN 0.127 NCTRAN 0.290 TIBPROME 0.225 GAEDU 0.156 GATRAN 0.304
IPI 0.118 RESNETAS 0.237 TCNMPROM 0.225 CHBRUTA 0.153 UECFINAL 0.250
DTFNO90D 0.091 EFECTIV 0.149 MBKMATCO 0.161 DEPCTAHO 0.117 PCNOVIS 0.080
MBCDUR 0.088 GATRAN 0.098 ITCRIPPN 0.143 DEPCTCOR 0.116 CREDBR 0.061
ISNIMAEM 0.084 CRDOBPRI 0.093 MBCNODU 0.111 AEMIN 0.114 EFECTIV 0.054
ISNCOMIN 0.084 MBISI 0.074 GAEDU 0.110 UEFORK 0.112 EXPSITEC 0.049
DEPCTCOR 0.070 UECFINAL 0.072 ITCRIPCT 0.102 PCVIS 0.103 GAVES 0.044
MBKSA 0.067 AEA 0.069 TASACTIV 0.084 GAVIV 0.100 CDT90DBA 0.044
ITCRIPPN 0.063 MBKEQTRA 0.060 CDT90DBA 0.080 TASACTIV 0.098 EXISTEN 0.041
TIBPROME 0.062 VOLACTPE 0.051 UEFORK 0.072 ISNIMAEM 0.096 M3 0.035
MBKSI 0.061 GAVIV 0.045 CAPINDE 0.066 MBICOMLU 0.094 CRBTES 0.034
ITCRIPPT 0.058 CAPINDE 0.044 ITCRIPCN 0.061 UEMATCO 0.093 BASEMON 0.031
MBKEQTRA 0.055 ACTPROD 0.042 NCREGUL 0.054 EXPAUMPR 0.088 MBICOMLU 0.027
CRBBAN 0.054 NCREGUL 0.042 AEIMAN 0.045 M1 0.084 GASAL 0.026
EXPAUMPR 0.053 M1 0.038 EXPPRO 0.042 NCTRAN 0.082 DEPCTAHO 0.025
CREDBR 0.052 PPI 0.038 GACUL 0.042 CREDBR 0.081 GAEDU 0.020
Numbers  correspond to the posterior inclus ion probabi l i ties

Variables with higher posterior probabilities - Predictive Likelihood
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h=1 h=3 h=6 h=9 h=12
ISNCOMIN 0.984 GAOTGA 0.692 EXPSITEC 0.817 ISNIMAOB 0.906 CDT90DBA 1.000
CPI 0.942 GAVIV 0.570 TASACTIV 0.739 EFECTIV 0.835 TASACTIV 1.000
TERMINTE 0.543 CRBTES 0.505 ITCRIPCN 0.539 PPI 0.772 GAOTGA 1.000
VOLACTPE 0.506 VOLACTPE 0.491 ITCRIPCT 0.539 NCTRAN 0.728 UECINTER 1.000
NCTRAN 0.496 MBISI 0.419 ITCRIPPN 0.497 ITCRIPCN 0.508 ISNIMAOB 0.998
GASAL 0.407 TASACTIV 0.408 ITCRIPPT 0.460 ITCRIPPT 0.313 GAVES 0.002
ITCRIPPT 0.161 CDT90DBA 0.407 EXPAUMPR 0.337 GAOTGA 0.098 TOTALDEP 0.000
UECFINAL 0.142 DTFNO90D 0.270 SECONOM 0.121 DEPCTAHO 0.097 MBKSI 0.000
PPI 0.133 AEMIN 0.205 GAVES 0.068 DTFNO90D 0.096 PPI 0.000
DTFNO90D 0.107 M1 0.197 CDT90DBA 0.067 PBPRODCO 0.091 CRDOBPRI 0.000
NCNOTRAN 0.085 ITCRIPPT 0.178 PBM 0.063 ITCRIPPN 0.072 GAVIV 0.000
ITCRIPCT 0.054 PBPRODCO 0.178 UEFORK 0.059 AEIMAN 0.070 NCTRAN 0.000
AEA 0.042 UEMATCO 0.082 TCNMPROM 0.038 ISRSINT 0.062 GATRAN 0.000
M1 0.030 TERMINTE 0.081 CRDOBPRI 0.029 RESNETAS 0.040 MBKMATCO 0.000
M3 0.028 UECINTER 0.066 EFECTIV 0.028 UECFINAL 0.035 CRBCORP 0.000
AEMIN 0.027 NCTRAN 0.065 GATRAN 0.028 PCNOVIS 0.025 TCNMPROM 0.000
CRDOBPRI 0.027 AEIMAN 0.034 UEMATCO 0.025 NCREGUL 0.022 DTFNO90D 0.000
ITCRIPCN 0.026 GAEDU 0.032 EXPPRO 0.025 EXISTEN 0.019 M1 0.000
PBM 0.018 DEPCTCOR 0.013 AEA 0.017 SECONOM 0.016 M2 0.000
GAOTGA 0.014 GACUL 0.013 TIBPROME 0.014 EXPPRO 0.016 UEFORK 0.000
Numbers  correspond to the posterior inclus ion probabi l i ties

Variables with higher posterior probability - Marginal likelihood

Eliana González (Banco de la República) BMA May, 2010 44 / 54



university-logo

 

Variable M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

GAOTGA 0,1,2 0 1 0,1 0 0 0,1 0 0,1 1 0,1 0 0 0,2 1 0,1 0 0 0 1

AEA 0 0,2 0,2 0,2 0,2 0 0 0 0 0,2 0 0,1 0 0,2 2 0 0,2 0,1 0 0

NCREGUL 1 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1

UECFINAL 2 0,2 0 2 0 1 0 2 1 0 0 2 2 1

TERMINTE 0 1 0 0 0 0 0 0

BASEMON 1 1 1 1 1 1 1

DEPCTAHO 1 2 0 1 0 0

EXPSITEC 1 1 2 2 1 2

GATRAN 2 0 1 1 2

EFECTIV 2 2 2 2 2

GAVES 0 0 1 1

M3 1 2 2 2

CDT90DBA 0 1 0

EXISTEN 2 2 0,2

PCNOVIS 0 1

MBICOMLU 1

CREDBR 2

GASAL 0,1

Posterior Prob. 0.120 0.070 0.059 0.058 0.055 0.049 0.049 0.047 0.046 0.044 0.042 0.042 0.042 0.041 0.040 0.040 0.040 0.040 0.039 0.038

* the numbers  in cel l s  are the lags  of each variable in the model

Models with higher posterior probability - Predictive likelihood - h=12

Eliana González (Banco de la República) BMA May, 2010 45 / 54



university-logo

 

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12

BMA-pl 0.338 0.807 1.777 1.083 1.114 0.874 1.000 1.560 1.804 1.022 0.962 1.021

BMA-ml 0.457 1.066 1.169 1.601 1.557 1.667 1.880 2.201 1.153 1.518 1.167 1.284

ITMA1 0.358 1.007 1.819 1.636 1.762 1.355 1.527 2.017 2.110 1.402 1.050 1.088

ITMA2 0.360 0.641 0.950 0.916 0.856 0.746 0.789 0.932 0.913 0.724 0.671 0.739

Simple average 0.358 1.007 1.819 1.635 1.762 1.355 1.527 2.017 2.110 1.402 1.050 1.088

Dynamic factors 0.307 0.728 1.071 1.400 1.732 1.974 2.003 2.097 2.203 2.213 2.189 2.326

Random Walk 0.473 0.851 1.175 1.457 1.742 2.024 2.278 2.473 2.608 2.712 2.789 2.801

Numbers  in bold and i ta l ic correspond to the cases  where MDM test for equal  forecast abi l i ty compared to the random

walk forecast i s  rejected

BMA-pl  refers  to BMA combination us ing predictive l ikel ihood

BMA-ml  refers  to BMA combination us ing marginal  l ikel ihood

ITMA1 refers  to the information theoretic model  averaging combination of models  selected by BMA

ITMA2 refers  to the information theoretic model  averaging combination of models  selected by ITMA

Forecast Evaluation - RSME
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Forecast Combination h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12

BMA_PL 1.000 0.528 0.154 0.806 0.924 0.994 0.990 0.898 0.734 1.000 0.998 0.998

BMA_ml 0.458 0.304 0.360 0.374 0.578 0.692 0.578 0.456 0.290 0.542 0.970 0.988

ITMA1 0.986 0.352 0.140 0.284 0.450 0.770 0.756 0.520 0.542 0.488 0.950 0.946

ITMA2 0.996 0.884 0.710 0.768 0.982 1.000 1.000 0.998 1.000 1.000 1.000 0.998

simple average 0.990 0.348 0.150 0.304 0.396 0.798 0.760 0.542 0.574 0.480 0.944 0.940

Dinamic Factors 1.000 0.984 0.960 0.550 0.810 0.726 0.602 0.390 0.320 0.280 0.356 0.356

% of samples  with reduction in RMSE of at least 5% relative to the random walk forecast.

Bootstrapping forecasting errors
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Concluding Remarks

An alternative approach of forecasting based on a large dataset of
potential predictors is implemented for the Colombian inflation.

BMA is a useful and consistent way to select variables and models
with high predictive power.

Variables and models chosen as good predictors differ whether they
are selected using marginal or predictive likelihood.

BMA outperforms the random walk forecast and simple average
combination and is a good competitor of the frequentist forecast
combination, ITMA.
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Eliana González (Banco de la República) BMA May, 2010 50 / 54



university-logo

Concluding Remarks

An alternative approach of forecasting based on a large dataset of
potential predictors is implemented for the Colombian inflation.

BMA is a useful and consistent way to select variables and models
with high predictive power.

Variables and models chosen as good predictors differ whether they
are selected using marginal or predictive likelihood.

BMA outperforms the random walk forecast and simple average
combination and is a good competitor of the frequentist forecast
combination, ITMA.
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Concluding Remarks ...

The gain of using BMA in reducing the forecasting error is observed
as the horizon increases, what is very helpful for our purpose of
forecasting inflation in the medium term.

Forecast combinations whose weigths are based on the predictive
ability of the models reduces the forecasting error relative to
combinations whose weights are based on the fit of the model.

BMA based on predictive likelihood is for some horizons better than
ITMA when both combinations are made over the models selected by
BMA

Selecting models by ITMA criteria, the combined forecast obtained by
the BMA weights performs better for most horizons.

The model selection by ITMA criteria, implicitly is using Bayesian
techniques when visiting the models for which the out-sample AIC
criterion is evaluated. This makes the comparison unfair.
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Eliana González (Banco de la República) BMA May, 2010 51 / 54



university-logo

Concluding Remarks ...

The gain of using BMA in reducing the forecasting error is observed
as the horizon increases, what is very helpful for our purpose of
forecasting inflation in the medium term.

Forecast combinations whose weigths are based on the predictive
ability of the models reduces the forecasting error relative to
combinations whose weights are based on the fit of the model.

BMA based on predictive likelihood is for some horizons better than
ITMA when both combinations are made over the models selected by
BMA

Selecting models by ITMA criteria, the combined forecast obtained by
the BMA weights performs better for most horizons.

The model selection by ITMA criteria, implicitly is using Bayesian
techniques when visiting the models for which the out-sample AIC
criterion is evaluated. This makes the comparison unfair.

Eliana González (Banco de la República) BMA May, 2010 51 / 54



university-logo

Concluding Remarks ...

The gain of using BMA in reducing the forecasting error is observed
as the horizon increases, what is very helpful for our purpose of
forecasting inflation in the medium term.

Forecast combinations whose weigths are based on the predictive
ability of the models reduces the forecasting error relative to
combinations whose weights are based on the fit of the model.

BMA based on predictive likelihood is for some horizons better than
ITMA when both combinations are made over the models selected by
BMA

Selecting models by ITMA criteria, the combined forecast obtained by
the BMA weights performs better for most horizons.

The model selection by ITMA criteria, implicitly is using Bayesian
techniques when visiting the models for which the out-sample AIC
criterion is evaluated. This makes the comparison unfair.
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Concluding Remarks ...

The variables chosen as best predictors for inflation have change to
some extent over the last two years, especially for the predictive
likelihood (40 % of the variables are selected with the full sample).
For marginal likelihood, it seems that the forces driving inflation have
not changed over time (70 % of the variables are selected with the full
sample).
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Concluding Remarks ...

for future research,

How often the selection of variables and models should be done in
order to continue applying this methodology on a regular basis, given
that the results are influenced by the sample, specially when using
predictive likelihood.

Which priors and which algorithm should be used to select the
variables and models, having into account the findings of Ohara and
Sillampaa,(2009), ”the performance of the method depends on the
priors and how it is implemented”

How many models to combine?

Which transformation should be used for the response variable and
the predictors?.
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END.
Thanks!
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